Emissions Inventory and Chemical Transport Modeling

Assembly Bill (AB) 617 Community Air Initiatives

Technical Advisory Group Meeting February 27, 2019

Overview

- Emissions and air quality modeling used to support the Air Quality Management Plan (AQMP) and the Multiple Air Toxics Exposure Study (MATES)
- Use of state-of-the-art modeling tools
- Use of modeling tools are peer reviewed in the scientific literature and during the Scientific, Technical & Modeling Peer Review (STMPR) Advisory Group meetings
- Modeling tools are in constant development and improvement

Preliminary MATES IV dat

Why do we need these tools?

Based on ARB's Blueprint for Community Emissions Reduction Programs:

Need to identify air pollution challenges facing the community:

- Baseline emissions from which emission reductions can be measured (i.e., source attribution analysis)
- Sources contributing to cumulative exposure burden

Develop strategies to reduce emissions and quantify results:

- **Evaluate emission reductions from community strategies**
- Quantify resulting reduction in exposure burden

Development of Emissions Inventory

Emission Source Categories

Methodology for Point Source Emissions

- Emissions from Annual Emissions Reporting (AER) Program
 - Approximately 2,000 facilities required to report
- Facilities that emit more than 4 tons/year of VOC, NOX, SOX or PM, or more than 100 tons/year of CO
 - Emissions categorized by USEPA's SCC
 - AER emissions combined with permit data
 - Business operation activity profile is recorded so annual emissions are distributed throughout day, week and year
- Toxic emissions calculated based on CARB speciation profiles for VOC and PM, based on SCC classification
- Consolidation of AB 2588 toxics emission inventory reporting requirements into the AER program (~ 177 toxics compounds)

Methodology for Area Source Emissions

- Emissions developed jointly by AQMD and CARB
 - CARB developed categories associated with consumer products, architectural coatings and degreasing (239 categories)
 - AQMD developed remaining 93 categories
 - Methodology for area sources is specific for each category
- Emissions spatially allocated to a 2km by 2km grid using spatial surrogates
 - Typical surrogates include: population, VMT, total employment, industrial and retail employment, housing, land cover types
- Toxic emissions calculated based on CARB speciation profiles for VOC and PM

Methodology for Area Source Emissions (Cont.)

 Distributed by a surrogate that best represents location of emissions

Common Surrogates

Population

VMT

Length of rail per grid cell

Locations of unpaved rural roads

Total housing

Agricultural land cover

National forest > 5000 ft

Total employment

Industrial employment

Retail employment

Single dwelling units

Rural land cover – forest

Rural land cover - range land

Methodology for On-road Source Emissions

- On-road emissions are calculated by combining vehicle emission factors and vehicular activity
- Emission factors are obtained from EMFAC
 - Emission factor for a given vehicle type depend on speed, temperature, relative humidity
- Link-based vehicular activity is obtained from SCAG
 - Volumes and speeds for LD, MD and HD are available at the transportation link level for 5 discrete periods of time (morning, midday, afternoon, evening, night) which are then distributed to 24 hour profiles
 - Day-of-week profiles are used to generate distinct emissions for Mon, Wed-Thu, Fri, Sat and Sun
- Direct Travel Impact Model (DTIM) is used to link emission factors and vehicle activity
 - DTIM uses hourly gridded temperature and RH values to calculate hourly gridded emissions using SCAG's data
- Toxic emissions calculated based on CARB speciation profiles for VOC and PM

Methodology for On-road Source Emissions (Cont.)

Methodology for Off-road Source Emissions

- CARB's OFF-ROAD model used for off-road categories
 - Except commercial ships, aircraft, locomotive and recreational vehicles
- OFF-ROAD includes:
 - population, activity, horsepower, load factors, and emission factors to yield the annual equipment emissions by county, air basin, or state
 - Spatial and temporal features are incorporated to estimate seasonal emissions
- Aircraft emissions developed by SCAQMD and allocated over the airports
- Ship emissions developed by CARB
- All emissions are allocated on the 2km by 2km grid, using spatial surrogates
- Toxic emissions calculated based on CARB speciation profiles for VOC and PM, based on SCC classification
- 2012 emissions are projections from 2008

Data Availability

- Emissions data readily available from MATESIV and 2016 AQMP for the year 2012 and future projections
- Additional resources include annual emissions reporting system data
- MATES V is underway, will provide data for future refinements of inventory and exposure analysis

Air Toxics

 selected compounds apportioned by the on-road, off-road, point, and area source categories are listed below

Table 3-4. 2012 Annual Average Day Toxic Emissions for the South Coast Air Basin.

		Emissions (lbs/day)				
	Pollutant	On-road	Off-road	Point	Area	Total
	Acetaldehyde*	2066.9	3083.1	108.1	1378.7	6636.9
	Acetone**	1796.1	2342.3	379.8	20569.3	25087.4
	Benzene	5336.3	4477.1	711.8	1506.5	12031.7
	1,3-Butadiene	1002.5	1028.7	435.2	107.2	2573.6
$\sqrt{}$	Carbon tetrachloride	0.0	0.0	6.6	0.1	6.7
$\sqrt{}$	Chloroform	0.0	0.0	12.7	0.8	13.5
$\sqrt{}$	1,1 Dichloroethane	0.0	0.0	0.3	65.3	65.5
	1,4 Dioxane	0.0	0.0	0.1	0.0	0.1
$\sqrt{}$	Ethylene dibromide	0.0	0.0	0.1	0.0	0.1
$\sqrt{}$	Ethylene dichloride	0.0	0.0	53.8	11.4	65.2
$\sqrt{}$	Ethylene oxide	0.0	0.0	4.9	0.0	4.9
$\sqrt{}$	Formaldehyde*	5159.8	7530.0	1678.2	4517.8	18885.8
	Methyl ethyl ketone*	335.1	423.2	870.8	5425.6	7054.7
	Methylene chloride	0.0	0.0	26.2	9874.3	9900.5
$\sqrt{}$	MTBE	0.0	1.1	0.1	0.0	1.2
$\sqrt{}$	Naphthalene	264.0	194.8	16.7	220.4	695.9
$\sqrt{}$	p-Dichlorobenzene	0.0	0.0	70.3	2945.1	3015.5
\checkmark	Perchloroethylene	0.0	0.0	805.0	5865.4	6670.4

Total Diesel PM Emissions

Diesel Emissions (PM2.5)

Diesel PM emissions from On-Road

On-Road Diesel Emissions (PM2.5)

Diesel PM emissions from Off-Road

Off-Road Diesel Emissions (PM2.5)

Diesel PM emissions from Ships

Pattern of Diesel Emissions (PM2.5) from Ships

Diesel PM emissions from Trains

Diesel Emissions (PM2.5) from Trains

Diesel PM emissions from Stationary

Stationary Diesel Emissions (PM2.5)

Employing State-of-Art Real-time Measurements and Methodologies to Improve Emissions Inventory

Improvements: On-Road Emissions Inventory

The 2016 AQMP inventory was developed based on traffic sensor

measurements data

Light & Medium Duty Traffic Volume near Los Angeles downtown in 2012

Further improvement specifically in heavy-duty vehicle category are under development.

Improvement in Ocean Going Vessels: Example of ship data near Port of LA

NOx Emissions from Ocean Going Vessels

Default Distribution

Updated Distribution

Altitude Resolving Aircraft Emissions

Currently aircraft emissions are treated as ground level release

NOx Emissions During Ascending (John Wayne Airport)

NOx Emissions During Descending (John Wayne Airport)

Temporal Allocation of Recreational Boats

- > This category accounts for 10% of the total VOC emissions
- High implication in simulating Weekdays vs. Weekends.
- Manually identify type and measure boats throughout SoCAB (only boats in motion were included)
- > From high resolution aerial photos on Google Earth since 2002 (~6 per site)

VS

Improvement in Urban Biogenic Emissions

- Working on using high-resolution (10m) Sentinel Satellite data to obtain Leaf Area Index and vegetation cover to provide inputs for urban canopy emissions
 - There is no information on urban vegetation from standard resolution satellite product, so emissions from urban canopy are underestimated
 - Need to improve our understanding of vegetation species used in urban environments, and their specific emission factors

High-Resolution Sentinel Satellite Image Processing

Vuolo et al, 2016, Remote Sens. 2016, 8, 938; doi:10.3390/rs8110938

Figure 1. Examples of a Sentinel-2 $100 \times 100 \text{ km}^2$ images (tile 33UXP, covering the region between Vienna and Bratislava, acquired on 6 May 2016) and value-added products available at the data service platform. Note that clouds extracted from the Level-1C cloud mask are displayed (as hashed symbol) in all other products. (a) RGB false color composite; (b) Scene classification; (c) Individual band; (d) Broadband hemispherical-directional reflectance factor (HDRF); (e) Leaf Area Index.

10m Resolution Sentinel Images for South Coast Air Basin

Future Improvements

- Increase emissions resolution from 2 km by 2 km grid to finer scale:
 - Spatial distribution of on-road sources at the transportation link level
 - Point source information from major polluters
 - Fuel stations specific information
 - Specific heavy-duty truck stops locations

Chemical Transport Modeling Platform

Chemical Transport Modeling Overview

 Computer models are used to simulate meteorology, emissions and air pollutant transformation and transport

Meteorological Modeling

- Use of Weather Forecast Research (WRF) model
 - Calculates meteorological parameters from ground level up to 10 km altitude
 - Four dimensional data assimilation using National Weather Service (NWS) upper-air sounding data and surface measurements
 - National Centers for Environmental Prediction (NCEP) North American Model (NAM) Assimilation Data for model initialization

Meteorological Modeling (Cont.)

- WRF modeling results able to capture trends
- Modeling error and biases within acceptable range

Observed/Predicted Temperature

Air Quality Modeling of Toxics

- Air quality modeling is conducted using state-of-the-science chemical transport models
 - The Comprehensive Air Quality Model with Extensions (CAMx) was used for toxics analyses
 - CAMx tracks emissions, dispersion, chemistry, deposition of multiple gas- and particle-phase species
 - Grid resolution is 2 km by 2km

Estimation of Cancer Risk

 Calculation of cancer risk with modeled output pollutant concentrations and cancer risk factors for individual toxic pollutants:

$$Risk_{i,j} = \sum_{k} Concentration_{i,j,k} \times Risk Factor_{i,j,k}$$

Where i,j are coordinates and k is a given toxic compound

Exposure Analysis

 Output pollutant concentrations are combined with population information to assess potential cancer risk due to exposure to air toxics

Air Quality Modeling of Criteria Pollutants

- EPA's recommended Community Multiscale Air Quality (CMAQ) model used in the Air Quality Management Plan (AQMP)
 - CMAQ tracks emissions, dispersion, chemistry, deposition of multiple gas- and particle-phase species
 - Grid resolution is 4 km by 4km
 - Requires background criteria pollutant concentrations, from global models (MOZART) and satellite measurements

Future Improvements: Assimilating Satellite Data

- Assimilating Satellite Data into Global Chemical Transport model, GEOS-CHEM to evaluate intercontinental scale transport
- Collaboration with NASA JPL and UC Riverside

Questions

blog.cleanenergy.org