Field Evaluation Kunak Air Lite

AQ-SPEC
Air Quality Sensor Performance Evaluation Center

Background

- From 03/01/2024 to 05/01/2024, three Kunak Air Lite multi-sensor units were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-by-side with Federal Equivalent Method (FEM) and Federal Reference Method (FRM) instruments measuring the same pollutants.
- Kunak Air Lite (3 units tested):
 - ➤ Gas Sensors: Electrochemical (Alphasense, non-FEM)
 - ➤ PM Optical (Plantower PMS5003, non-FEM)
 - ightharpoonup Each unit measures: O₃ (ppb), NO₂ (ppb), PM_{1.0} (μg/m³), PM_{2.5} (μg/m³), PM₁₀(μg/m³), T (°C), RH (%)
 - ➤ Unit cost: \$5,033 as-tested (\$5,960 with cloud service)
 - > Time resolution: 1-min
 - > Units IDs: 144, 145, and 146

- South Coast AQMD Reference instruments:
 - > O₃ instrument (Teledyne T400, hereinafter FEM T400); cost: ~\$7,000
 - > Time resolution; 1-min
 - ➤ NO/NO₂ instrument (Teledyne T200, hereinafter FRM T200); cost: ~\$11,000
 - ➤ Time resolution: 1-min
 - ➤ PM instrument (Teledyne API T640; FEM PM_{2.5}, hereinafter FEM T640); cost: \$21,000
 - > Time resolution: 1-min
 - \triangleright Measures PM_{1.0}, PM_{2.5}, PM₁₀ (μ g/m³)
 - ➤ PM Instrument (MetOne BAM; FEM PM_{2.5} and PM₁₀, hereinafter FEM BAM); cost: \$25,000 and up
 - > Time resolution: 1-hr
 - ightharpoonup Measures PM_{2.5}, PM₁₀ (μ g/m³)
 - ➤ Met station (T, RH, P, WS, WD); cost: ~\$5,000
 - > Time resolution: 1-min

Ozone (O₃) in Kunak Air Lite

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery for O₃ from Unit 144, Unit 145 and Unit 146 was ~98.9%, ~99.1% and ~99.1%, respectively
- Values below manufacturer stated limit of detection were excluded from further analysis but do not count against data recovery

Kunak Air Lite; Intra-model variability

- Absolute intra-model variability was ~1.09 ppb for the ozone measurements (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~2.86% for the ozone measurements
 (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

Kunak Air Lite vs FEM T400 (Ozone; 5-min mean)

- The Kunak Air Lite sensors showed strong correlation with the corresponding FEM T400 ozone data (0.84 < R² < 0.89)
- Overall, the Kunak Air Lite sensors underestimated the ozone concentration as measured by the FEM T400 ozone instrument
- The Kunak Air Lite sensors seemed to track the diurnal ozone variations as recorded by the FEM T400 instrument

Kunak Air Lite vs FEM T400 (Ozone; 1-hr mean)

- The Kunak Air Lite sensors showed strong correlation with the corresponding FEM T400 ozone data (0.85 < R² < 0.90)
- Overall, the Kunak Air Lite sensors underestimated the ozone concentration as measured by the FEM T400 ozone instrument
- The Kunak Air Lite sensors seemed to track the diurnal ozone variations as recorded by the FEM T400 instrument

Kunak Air Lite vs FEM T400 (Ozone; 8-hr mean)

- The Kunak Air Lite sensors showed strong correlation with the corresponding FEM T400 ozone data (0.78 < R² < 0.88)
- Overall, the Kunak Air Lite sensors underestimated the ozone concentration as measured by the FEM T400 ozone instrument
- The Kunak Air Lite sensors seemed to track the diurnal ozone variations as recorded by the FEM T400 instrument

Summary: Ozone

	Averag Sensors		Kunak Air Lite vs FEM T400, Ozone						FEM T400, Ozone (ppb)		
	Average (ppb)	SD (ppb)	R^2	Slope	Intercept	MBE ¹ (ppb)	MAE ² (ppb)	RMSE ³ (ppb)	FEM T400 Average	FEM T400 SD	Range during the field evaluation
5-min	37.0	17.1	0.85 to 0.89	0.75 to 0.89	6.3 to 13.4	-4.1 to -2.1	4.7 to 6.8	5.9 to 8.2	35.1	19.2	0.1 to 138.1
1-hr	37.5	16.5	0.85 to 0.90	0.75 to 0.90	6.1 to 13.4	-4.2 to -2.1	4.5 to 6.7	5.5 to 8.0	34.0	19.2	0.5 to 94.6
8-hr	38.0	11.7	0.79 to 0.87	0.80 to 0.97	3.0 to 10.8	-3.4 to -1.7	3.7 to 5.4	4.3 to 6.3	34.1	16.3	1.2 to 74.4

¹ Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.

Nitrogen Dioxide (NO₂) in Kunak Air Lite

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery for NO₂ from Unit 144, Unit 145 and Unit 146 was ~99.0%, ~99.1% and ~99.2%, respectively
- Values below manufacturer stated limit of detection were excluded from further analysis but do not count against data recovery

Kunak Air Lite; Intra-model variability

- Absolute intra-model variability was \sim 0.41 ppb for the NO $_2$ measurements (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~3.21% for the NO₂ measurements (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

Kunak Air Lite vs FRM T200 (NO₂; 5-min mean)

- The Kunak Air Lite sensors showed moderate correlations with the corresponding FRM T200 NO₂ data (0.66 < R² < 0.70)
- Overall, the Kunak Air Lite sensors overestimated the NO₂ concentration as measured by the FRM T200 instrument
- The Kunak Air Lite sensors seemed to track the diurnal NO₂ variations as recorded by the FRM T200 instrument

Kunak Air Lite vs FRM T200 (NO₂; 1-hr mean)

- The Kunak Air Lite sensors showed moderate to strong correlations with the corresponding FRM T200 NO₂ data (0.68 < R² < 0.73)
- Overall, the Kunak Air Lite sensors overestimated the NO₂ concentration as measured by the FRM T200 instrument
- The Kunak Air Lite sensors seemed to track the diurnal NO₂ variations as recorded by the FRM T200 instrument

Kunak Air Lite vs FRM T200 (NO₂; 24-hr mean)

- The Kunak Air Lite sensors showed moderate to strong correlations with the corresponding FRM T200 NO₂ data (0.57 < R² < 0.71)
- Overall, the Kunak Air Lite sensors overestimated the NO₂ concentration as measured by the FRM T200 instrument
- The Kunak Air Lite sensors seemed to track the daily NO₂ variations as recorded by the FRM T200 instrument

Summary: NO₂

	Average of 3 Sensors, NO ₂		Kunak Air Lite vs FRM T200, NO ₂							FRM T200, NO ₂ (ppb)		
	Average (ppb)	SD (ppb)	R ²	Slope	Intercept	MBE ¹ (ppb)	MAE ² (ppb)	RMSE ³ (ppb)	FRM T200 Average		Range during the field evaluation	
5-min	12.5	6.3	0.66 to 0.70	1.08 to 1.15	-3.4 to -3.3	1.7 to 2.3	4.2 to 4.5	5.0 to 5.4	9.1	8.1	0.5 to 42.3	
1-hr	12.6	6.1	0.69 to 0.72	1.12 to 1.20	-4.2 to -4.0	1.7 to 2.4	4.1 to 4.4	4.9 to 5.3	9.4	8.1	1.0 to 40.1	
24-hr	12.6	3.6	0.58 to 0.71	0.83 to 1.13	-5.2 to -1.7	3.6 to 4.0	3.9 to 4.3	4.4 to 4.9	9.1	4.2	2.6 to 19.7	

¹ Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.

Particulate Matter (PM) in Kunak Air Lite

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery from Unit 144, Unit 145 and Unit 146 was ~99.5%, ~99.8% and ~99.9%, respectively for all PM measurements
- Values below manufacturer stated limit of detection were excluded from further analysis but do not count against data recovery

Kunak Air Lite; intra-model variability

- Absolute intra-model variability was ~0.57, ~0.68 and ~0.72 μ g/m³ for PM_{1.0}, PM_{2.5} and PM₁₀, respectively (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~12.09%, ~8.75% and ~8.37% for $PM_{1.0}$, $PM_{2.5}$ and PM_{10} , respectively (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

Reference Instruments: PM_{2.5} FEM BAM and FEM T640

- Data recovery for PM_{2.5} from FEM BAM and FEM T640 was ~ 99.1% and 99.9%, respectively.
- Strong correlations between the reference instruments for PM_{2.5} measurements (R² ~0.77) were observed.

Reference Instruments: PM₁₀ FEM BAM and T640

- Data recovery for PM₁₀ from FEM BAM and T640 was ~ 98.9% and 99.9%, respectively.
- Strong correlations between the reference instruments for PM₁₀ measurements (R² ~0.83) were observed.

Kunak Air Lite vs T640 (PM_{1.0}; 5-min mean)

- The Kunak Air Lite sensors showed strong correlations with the corresponding T640 data (0.76 < R² < 0.79)
- Overall, the Kunak Air Lite sensors underestimated the PM_{1.0} mass concentrations as measured by T640
- The Kunak Air Lite sensors seemed to track the PM_{1.0} diurnal variations as recorded by T640

Kunak Air Lite vs FEM T640 (PM_{2.5}; 5-min mean)

- The Kunak Air Lite sensors showed strong to very strong correlations with the corresponding FEM T640 data (0.88 < R² < 0.91)
- Overall, the Kunak Air Lite sensors underestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The Kunak Air Lite sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM T640

Kunak Air Lite vs T640 (PM₁₀; 5-min mean)

- The Kunak Air Lite sensors showed moderate correlations with the corresponding T640 data (0.60 < R² < 0.63)
- Overall, the Kunak Air Lite sensors underestimated the PM₁₀ mass concentrations as measured by T640
- The Kunak Air Lite sensors seemed to track the PM₁₀ diurnal variations as recorded by T640

Kunak Air Lite vs T640 (PM_{1.0}; 1-hr mean)

- The Kunak Air Lite sensors showed strong correlations with the corresponding T640 data (0.77 < R² < 0.80)
- Overall, the Kunak Air Lite sensors underestimated the PM_{1.0} mass concentrations as measured by T640
- The Kunak Air Lite sensors seemed to track the PM_{1.0} diurnal variations as recorded by T640

Kunak Air Lite vs FEM T640 (PM_{2.5}; 1-hr mean)

- The Kunak Air Lite sensors showed strong to very strong correlations with the corresponding FEM T640 data (0.89 < R² < 0.92)
- Overall, the Kunak Air Lite sensors underestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The Kunak Air Lite sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM T640

Kunak Air Lite vs T640 (PM₁₀; 1-hr mean)

- The Kunak Air Lite sensors showed moderate correlations with the corresponding T640 data (0.64 < R² < 0.67)
- Overall, the Kunak Air Lite sensors underestimated the PM₁₀ mass concentrations as measured by T640
- The Kunak Air Lite sensors seemed to track the PM₁₀ diurnal variations as recorded by T640

Kunak Air Lite vs T640 (PM_{1.0}; 24-hr mean)

- The Kunak Air Lite sensors showed strong correlations with the corresponding T640 data (0.87 < R² < 0.89)
- Overall, the Kunak Air Lite sensors underestimated the PM_{1.0} mass concentrations as measured by T640
- The Kunak Air Lite sensors seemed to track the PM_{1.0} daily variations as recorded by T640

Kunak Air Lite vs FEM T640 (PM_{2.5}; 24-hr mean)

- The Kunak Air Lite sensors showed very strong correlations with the corresponding FEM T640 data (0.95 < R² < 0.96)
- Overall, the Kunak Air Lite sensors underestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The Kunak Air Lite sensors seemed to track the PM_{2.5} daily variations as recorded by FEM T640

Kunak Air Lite vs T640 (PM₁₀; 24-hr mean)

- The Kunak Air Lite sensors showed strong correlations with the corresponding T640 data (0.72 < R² < 0.75)
- Overall, the Kunak Air Lite sensors underestimated the PM₁₀ mass concentrations as measured by T640
- The Kunak Air Lite sensors seemed to track the PM₁₀ daily variations as recorded by T640

Kunak Air Lite vs FEM BAM (PM_{2.5}; 1-hr mean)

- The Kunak Air Lite sensors showed strong correlations with the corresponding FEM BAM data (0.70 < R² < 0.72)
- Overall, the Kunak Air Lite sensors underestimated the PM_{2.5} mass concentrations as measured by FEM BAM
- The Kunak Air Lite sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM BAM

Kunak Air Lite vs FEM BAM (PM₁₀; 1-hr mean)

- The Kunak Air Lite sensors showed weak correlations with the corresponding FEM BAM data (0.40 < R² < 0.42)
- Overall, the Kunak Air Lite sensors underestimated the PM₁₀ mass concentrations as measured by FEM BAM
- The Kunak Air Lite sensors seemed to track the PM₁₀ diurnal variations as recorded by FEM BAM

Kunak Air Lite vs FEM BAM (PM_{2.5}; 24-hr mean)

- The Kunak Air Lite sensors showed strong correlations with the corresponding FEM BAM data (0.89 < R² < 0.90)
- Overall, the Kunak Air Lite sensors underestimated the PM_{2.5} mass concentrations as measured by FEM BAM
- The Kunak Air Lite sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM BAM

Kunak Air Lite vs FEM BAM (PM₁₀; 24-hr mean)

- The Kunak Air Lite sensors showed weak correlations with the corresponding FEM BAM data (0.45 < R² < 0.50)
- Overall, the Kunak Air Lite sensors underestimated the PM₁₀ mass concentrations as measured by FEM BAM
- The Kunak Air Lite sensors seemed to track the PM₁₀ diurnal variations as recorded by FEM BAM

Summary: PM

	Average of 3 Sensors, PM _{1.0}		Kunak Air Lite vs T640, PM _{1.0}						T640 (PM _{1.0} , μg/m³)				
	Average (μg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (μg/m ³)	MAE ² (μg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation		
5-min	4.6	3.3	0.76 to 0.79	1.41 to 1.72	0.5 to 0.8	-3.8 to -2.6	2.6 to 3.8	4.1 to 5.3	6.7	5.9	0.2 to 43.2		
1-hr	4.6	3.3	0.77 to 0.80	1.45 to 1.77	0.3 to 0.6	-3.9 to -2.7	2.7 to 3.9	4.1 to 5.3	6.7	5.9	0.3 to 42.0		
24-hr	4.9	2.6	0.87 to 0.88	1.61 to 2.06	-1.0 to -0.7	-3.9 to -2.6	2.6 to 3.9	3.6 to 4.9	6.7	4.9	1.1 to 24.4		
	Average of 3 Sensors, PM _{2.5}			Kunak Air Lite vs FEM BAM & FEM T640, PM _{2.5}						FEM BAM & FEM T640 (PM _{2.5} , μg/m³)			
	Average	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (μg/m ³)	MAE ² (μg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation		
5-min	7.6	6.8	0.88 to 0.90	0.87 to 0.99	2.5 to 2.7	-2.6 to -1.4	2.1 to 2.8	2.7 to 3.5	9.0	6.9	0.1 to 49.5		
1-hr	7.7	6.7	0.70 to 0.91	0.67 to 1.01	2.4 to 3.0	-2.6 to -0.1	2.1 to 3.0	2.6 to 4.0	8.0 to 9.0	5.9 to 6.8	0.0 to 47.4		
24-hr	7.6	5.5	0.89 to 0.96	0.65 to 1.06	1.9 to 2.9	-2.4 to -0.01	1.5 to 2.4	1.8 to 2.7	7.9 to 9.0	4.3 to 5.7	1.7 to 28.0		
	Average of 3 Sensors, PM ₁₀		Kunak Air Lite vs FEM BAM & T640, PM ₁₀						FEM BAM & T640 (PM ₁₀ , μg/m ³)				
	Average	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (μg/m³)	MAE ² (μg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation		
5-min	8.4	7.1	0.61 to 0.62	1.47 to 1.67	12.4 to 12.8	-18.2 to -16.7	16.7 to 18.2	19.2 to 20.8	23.9	15.1	0.2 to 138.8		
1-hr	8.5	7.0	0.41 to 0.66	0.96 to 1.69	12.4 to 14.4	-18.3 to -13.8	13.9 to 18.3	16.4 to 20.6	21.3 to 23.9	12.6 to 14.7	0.0 to 104.5		
24-hr	8.8	5.9	0.46 to 0.75	0.92 to 1.67	11.9 to 15.6	-18.4 to -13.5	13.5 to 18.4	14.7 to 19.6	21.3 to 23.9	9.6 to 11.8	4.4 to 54.4		

¹ Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.

Kunak Air Lite vs South Coast AQMD Met Station (Temp; 5-min mean)

Kunak Air Lite vs. South Coast AQMD Met Station

- The Kunak Air Lite sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (0.97 < R² < 0.99)
- Overall, the Kunak Air Lite sensors overestimated the temperature measurement as recorded by South Coast AQMD Met Station
- The Kunak Air Lite sensors seemed to track the diurnal temperature variations as recorded by South Coast AQMD Met Station

Kunak Air Lite vs South Coast AQMD Met Station (RH; 5-min mean)

Kunak Air Lite vs. South Coast AQMD Met Station

- Kunak Air Lite sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data $(0.98 < R^2 < 0.99)$
- Overall, the Kunak Air Lite sensors underestimated the RH measurement as recorded by South Coast **AQMD Met Station**
- The Kunak Air Lite sensors seemed to track the diurnal RH variations as recorded by South Coast **AQMD Met Station**

Discussion

- The three **Kunak Air Lite** sensors' data recovery for O₃, NO₂ and all PM fractions was ~99.0%, 99.1% and 99.7%, respectively.
- The absolute intra-model variability for O_3 and NO_2 was ~1.09 ppb and ~0.41 ppb, respectively. Absolute intra-model variability was ~ 0.57, ~0.68 and ~0.72 μ g/m³ for $PM_{1.0}$, $PM_{2.5}$ and PM_{10} , respectively
- Reference instruments: strong correlations between FEM BAM and FEM T640 for $PM_{2.5}$ ($R^2 \sim 0.77$, 1-hr mean) and strong correlations between FEM BAM and T640 for PM_{10} ($R^2 \sim 0.83$, 1-hr mean) mass concentration measurements
- During the entire field deployment testing period:
 - ➤ Ozone sensors showed strong correlation with the FEM T400 instrument (0.84 < R² < 0.89, 5-min mean) and generally underestimated the corresponding FEM T400 data
 - NO₂ sensors showed moderate correlations with the FRM T200 instrument (0.66 < R² < 0.70, 5-min mean) and overestimated the corresponding FRM T200 data</p>
 - ➤ The Kunak Air Lite sensors showed strong correlations with the corresponding reference PM_{1.0} data (0.77 < R² < 0.80, 1-hr mean), strong to very strong correlations with the corresponding reference PM_{2.5} data (0.70 < R² < 0.92, 1-hr mean) and weak to moderate correlations with the corresponding reference PM₁₀ data (0.4 < R² < 0.67; 1-hr mean). The sensors underestimated PM_{1.0}, PM_{2.5} and PM₁₀ mass concentrations as measured by the reference instruments
 - ➤ Temperature and relative humidity sensors showed very strong correlations with the South Coast AQMD Met Station T and RH data, respectively (R² ~ 0.98 for T and R² ~ 0.98 for RH) and overestimated the T and underestimated the RH data as recorded by the South Coast AQMD Met Station
- No sensor calibration was performed by South Coast AQMD staff for this evaluation.
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under controlled T and RH conditions, and known target and interferent pollutants concentrations.
- These results are still preliminary