AQ-SPEC

Air Quality Sensor Performance Evaluation Center

Sensor Description

Manufacturer/Model: Vaisala/AQT530

Pollutants: O₃

Time Resolution: 1-min

Type: Electrochemical

Additional Information

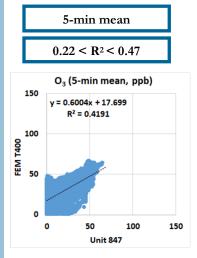
Field evaluation report:

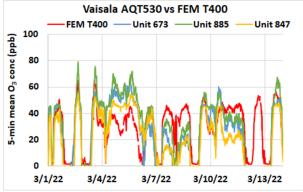
http://www.aqmd.gov/aqspec/evaluations/criteriapollutants/field

Lab evaluation report:

http://www.aqmd.gov/aqspec/evaluations/criteriapollutants/laboratory

AQ-SPEC website:


http://www.aqmd.gov/aq-spec


Evaluation Summary

- Overall, the accuracy of the Vaisala AQT530 sensors ranged from 64.9% to 94.6% and decreased as O₃ conc. increased over the tested concentration range, except at the first steady state. Overall, the sensors overestimated the O₃ measurements from FEM T400 in the laboratory experiments at 20°C and 40% RH.
- The Vaisala AQT530 sensors exhibited high precision for all T/RH combinations and all O₃ concentrations.
- The Vaisala AQT530 sensors (IDs: 673, 885, 847) showed low to high intramodel variability in the field and laboratory evaluations.
- Data recovery was \sim 75% 89% from all units in both field and laboratory evaluations.
- The Vaisala AQT530 sensors showed very weak to weak correlations (0.22 \times R² < 0.47, 5-min mean) with the corresponding FEM T400 data in the field evaluation and very strong correlations with the FEM T400 in the laboratory evaluations (R² > 0.96).
- The same three Vaisala AQT530 units were tested both in the field (1st stage of testing) and in the laboratory (2nd stage of testing).

Field Evaluation Highlights

- Deployment period 01/14/2022 to 03/25/2022: the three Vaisala AQT530 sensors showed very weak to weak correlations with the corresponding FEM O₃ data
- The units exhibited low intra-model variability and data recovery for O₃ measurements was ~86-89% from all units.

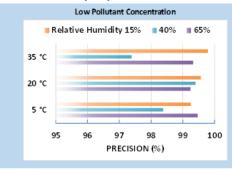
Coefficient of Determination (R^2) quantifies how the three sensors followed the O_3 concentration change by the reference instruments.

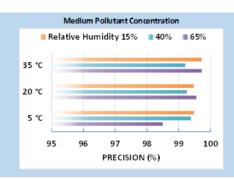
An R² approaching the value of 1 reflects a near perfect agreement, whereas a value of 0 indicates a complete lack of correlation.

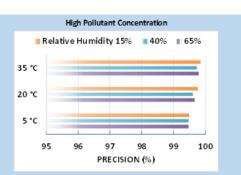
Laboratory Evaluation Highlights

Accuracy (O₃)

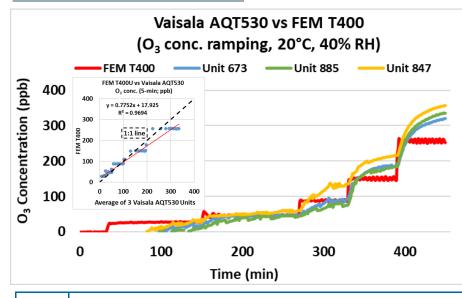
A (%) =
$$100 - \frac{|\bar{X} - \bar{R}|}{\bar{R}} * 100$$


Steady State (#)	Sensor Mean (ppb)	FEM T400 (ppb)	Accuracy (%)
1	18.5	28.5	64.9
2	50.1	47.5	94.6
3	98.7	88.6	88.6
4	191.4	150.6	72.9
5	331.2	257.0	71.1


Accuracy was evaluated by a concentration ramping experiment at 20°C and 40% RH. The sensor's readings at each ramping steady state are compared to the reference instrument.


A negative % means sensors' overestimation by more than two fold. The higher the positive value (close to 100%), the higher the sensor's accuracy.

Precision (O₃)



100% represents high precision.

Sensor's ability to generate precise measurements of O₃ concentration at low, medium, and high pollutant levels were evaluated under 9 combinations of T and RH, including extreme weather conditions like cold and dry (5°C and 15% RH) cold and humid (5°C and 65% RH), hot and humid (35°C and 65% RH), or hot and dry (35°C and 15% RH).

Coefficient of Determination

The Vaisala AQT530 sensors showed very strong correlations with the corresponding FEM T400 O₃ data (R² > 0.96) at 20°C and 40% RH.

Climate Susceptibility

From the laboratory studies, temperature and relative humidity had minimal effect on the precision of the Vaisala AQT530 sensors' ozone measurements.

Observed Interferents

 NO_2

All documents, reports, data, and other information provided in this document are for informational use only. Mention of trade names or commercial products does not constitute endorsement or recommendation. As a Government Agency, the South Coast AQMD and its AQ-SPEC program highly recommend interested entities to make use and purchase decisions based on the requirements of their study design, the technical aspects and features of their specific project applications.