US California WIF project

In Cooperation with MSC, SCAQMD, Port of Long Beach and Port of Los Angeles

Agenda

- 2 WIF system
- **3** WIF Fuel
- **4** Sea Trials on board MSC Anzu
- **5** Test program & Measurements
- 6 Costs and NOx reduction
- 7 Future Projects Dual Fuel Conversion

1. Introduction / How did we get here?

Timeline

2018 May, SCAQMD reached out to MAN with a question

2018 December, Ocean Going Vessels Technology Forum at SCAQMD facility

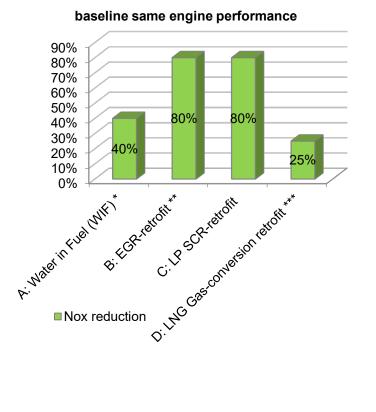
2019 June, MSC confirmed their participation / MSC Silvia identified as demonstration vessel

2019 November, SCAQMD board approved the WIF project

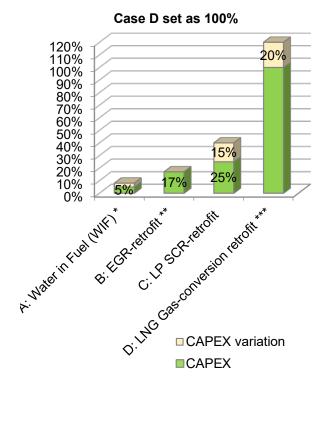
2020 May, Port of Long Beach and Los Angeles Boards approved

2020 June, Contracts signed - between SCAQMD and MAN - between MSC and MAN

2020 October, MSC Anzu is selected to be the demonstration vessel

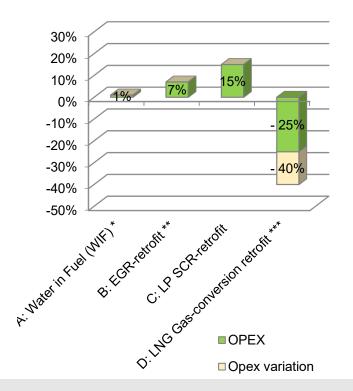

2022 August, Final sea trial and results

NOx reduction technologies for 2 stroke engines



Comparison of Reduction Potentials vs. Investment Cost vs. Operational cost

NOx reduction

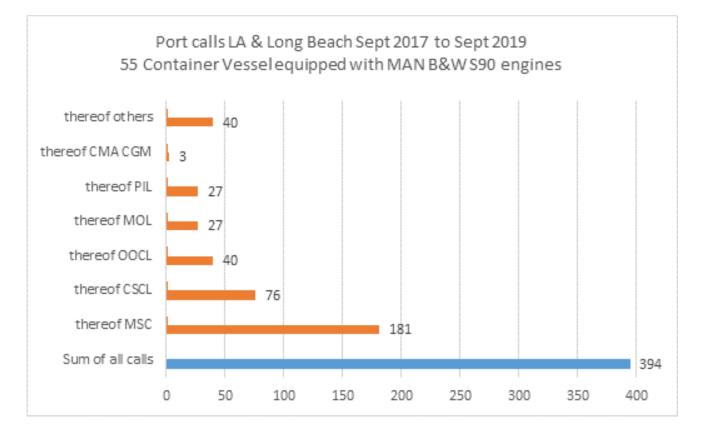


CAPEX comparison

OPEX comparison

baseline MGO operation ~2000 h/a ~7500 kW propulsion power

* up to 50%SMCR


*** ME engine types Tier II

** if ME-engine is prepared for EGR

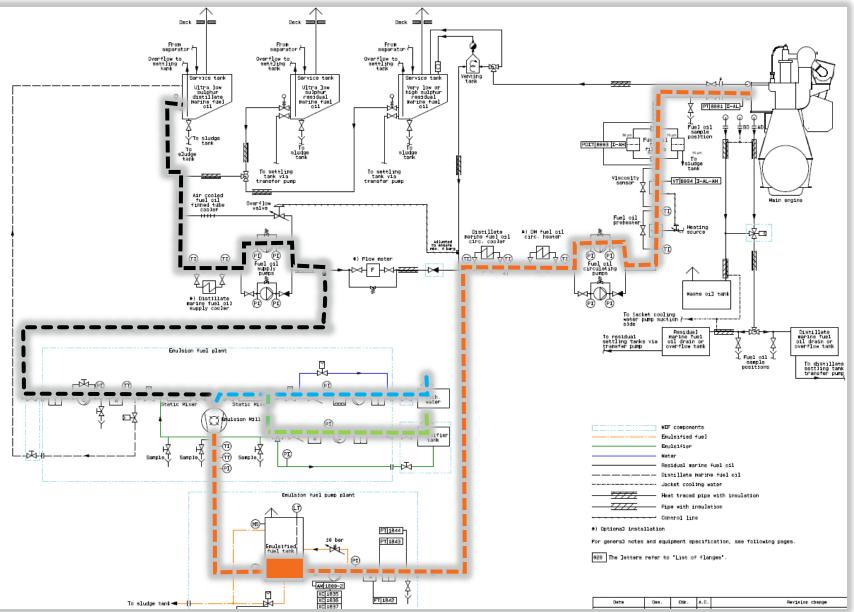
Ship type selection

How to achieve the most reduction

- Bigger ships producing the highest amount of emissions in quantity
- Tackling containership segment
- Which vessels have visited the Los Angeles and Long Beach ports the most in a given time period?
- Which engines are the best candidates for highest amount of reduction?

2. Water in Fuel System

Design stage


What's unique about this Water in Fuel System?

- Previous experience with similar systems
- Reliability
- New emulsification technology, bitumen technology, new materials
- New chemicals
- New partners that MAN has found through other R&D projects
- Designing the WIF unit

How it works?

Installation

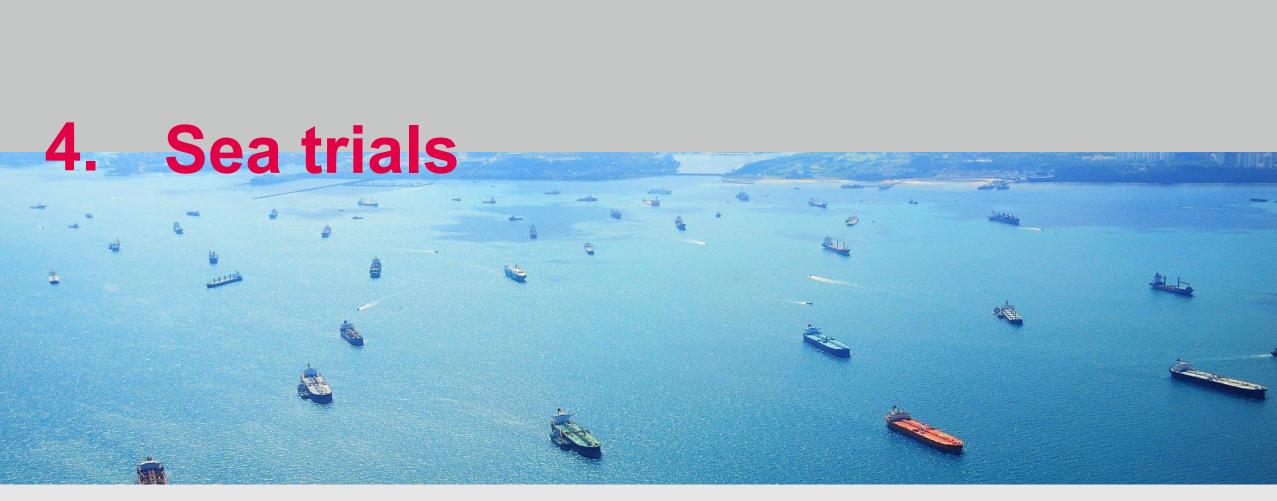
- Team of 4
- Sailed with the ship for 4 weeks
- No dry docking, no down time for the ship, installation during service
- Finalizing the installation in Port of Long Beach in December 2021

Installation, finalized

Maximum 50% engine load during operation of the WIF unit

– WIF pump unit

– WIF mixer unit


"WIF" fuel

The WIF fuel is a Mixture of Ultra Low Sulphur diesel, Water & Emulsifier Final mix: 41% Water and 0,5% Emulsifier into the diesel

First Sea Trial

March / April 2022

Commissioning test from London – Hamburg – Rotterdam

Due to wrong Emulsifier the commissioning of WIF system was not possible.

Only diesel mode was tested during the voyage and performance test was done.

In total 6 performance tests were performed during this Sea Trial

Second Sea Trial

June 2022

Commissioning & initial test performed from Antwerp - London – Sines

Team of 4

Maximum 31% water content in the mixture

In total 17 performance test was performed during this Sea Trial

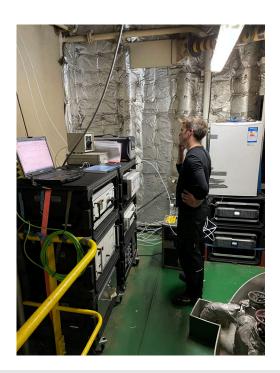
Third Sea Trial

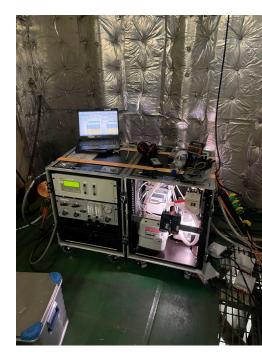
August 2022

Initial test & Final test from Antwerp to Sines

Team of 6

Maximum 41% water content in the mixture

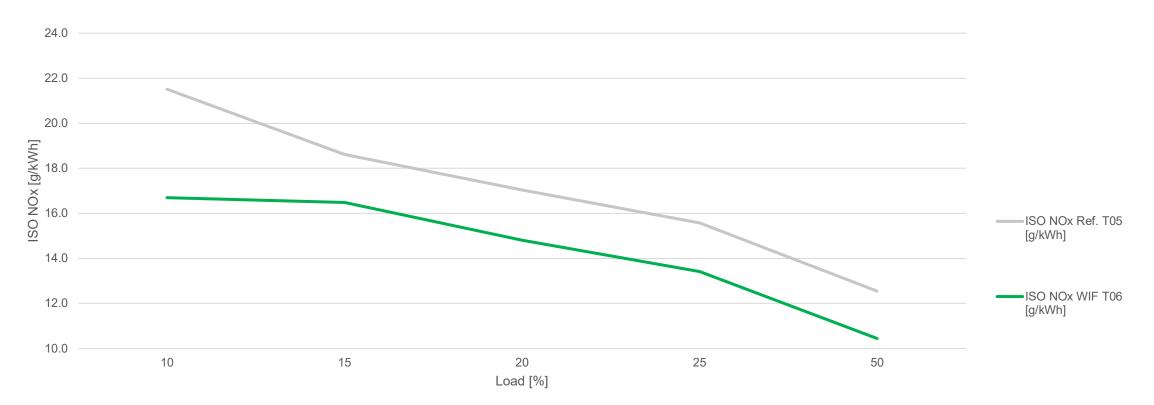

In total 20 performance tests were performed during this Sea Trial



Measurement on board MSC Anzu

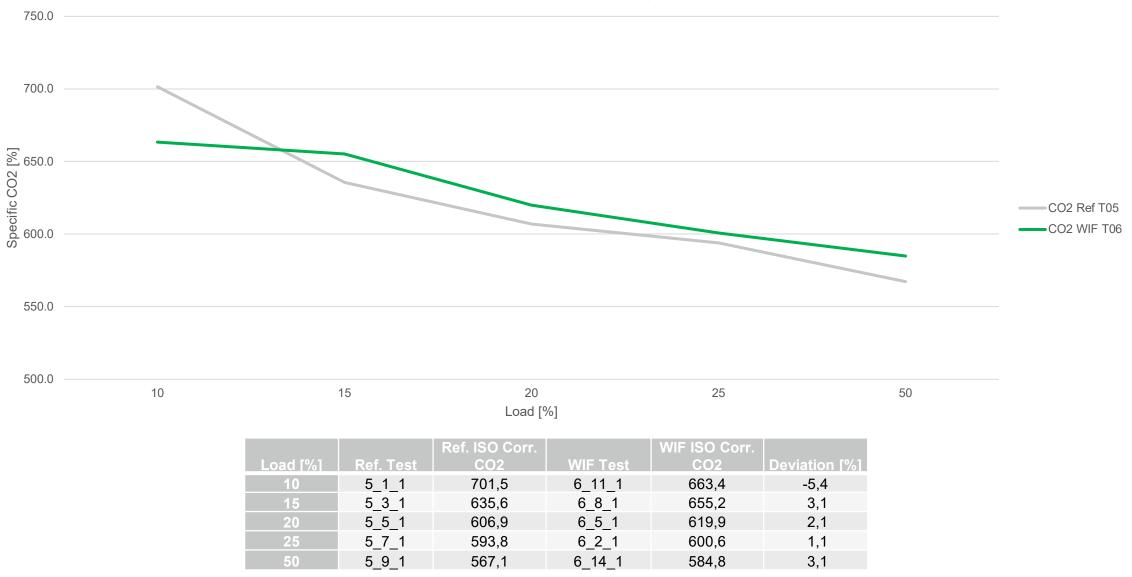
- Performance measurement
- Fuel measurement (Diesel, Water & Emulsifier)
- Emission measurement (NOx, CO₂, CO,O₂,THC)
- Particular Matters measurement
- Filter smoke number (FSN)

Test#	WIF	Emulsifier	Water	Engine power [% SMCR]	Running mode	Date [dd/mm/yyyy]	Measurement time (start) [hh:mm]	Remark
T05_1				10			11:12	
T05_3				15		21-08-2022	14:19	
T05_5				20	Def MDO		16:03	
T05_7				25	Ref. MDO		17:21	
T05_9				50			19:40	
T05_11				75			21:21	
T06_11	70%	0,5%	41%	10			17:21	
T06_8	70%	0,5%	41%	15		00/00 00	16:14	
T06_5	70%	0,5%	41%	20	WIF	22/23-08-	15:04	
T06_2	70%	0,5%	41%	25		2022	13:41	
T06_14	60%	0,5%	38%	50			11:53	
T07_1	40%	0,5%	29%	25		22 09 2022	17:47	
T07_2	40%	2,0%	29%	25	WIF	23-08-2022	18:55	
T07_3	40%	4,0%	29%	25	1		20:20	


Test program approved by California Air Resources Board

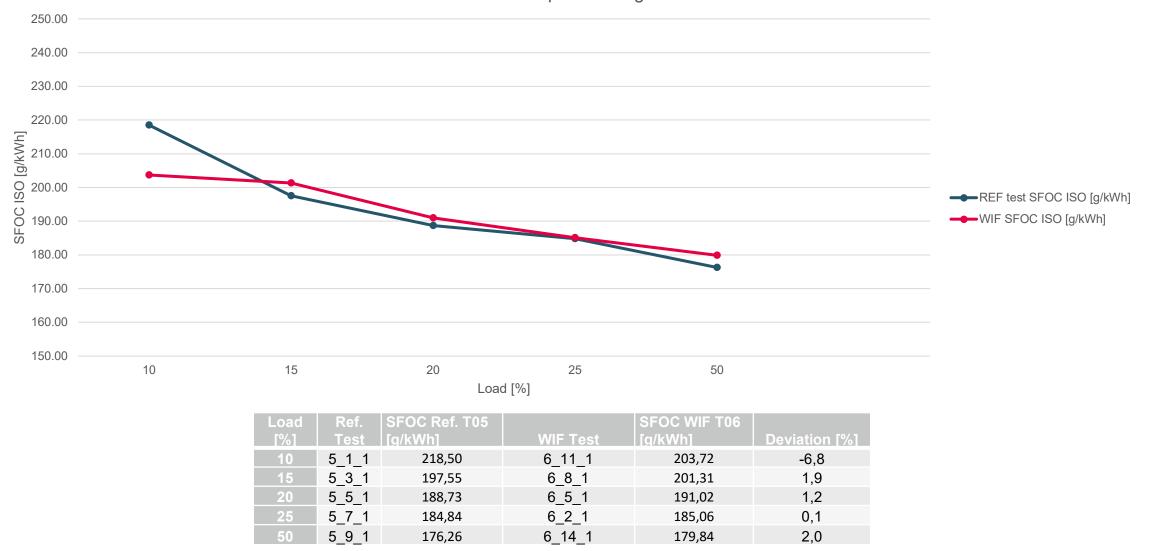
NOx results

Comparison ISO NOx [g/kWh]

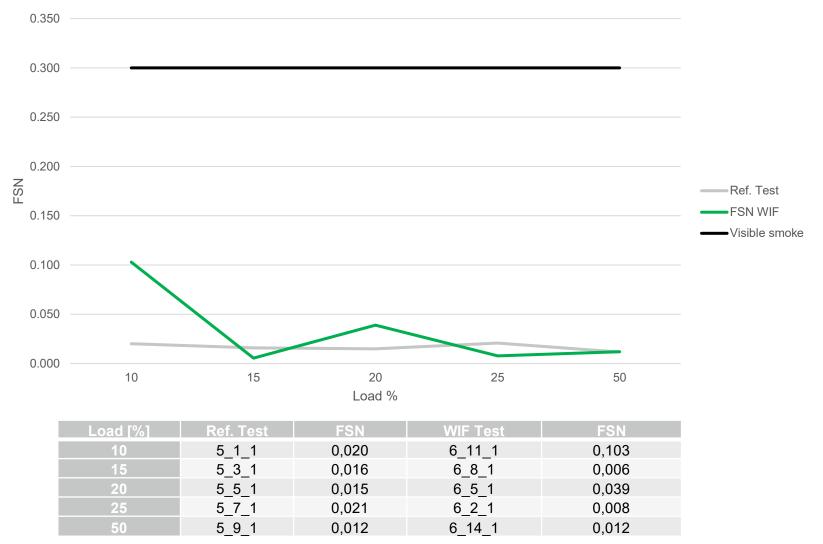


		Ref. ISO Corr.		WIF ISO Corr.	
Load [%]	Ref. Test	NOx	WIF Test	NOx	Deviation [%]
10	5_1_1	21,5	6_11_1	16,7	-22,4
15	5_3_1	18,6	6_8_1	16,5	-11,4
20	5_5_1	17,0	6_5_1	14,8	-13,1
25	5_7_1	15,6	6_2_1	13,4	-13,9
50	5_9_1	12,5	6_14_1	10,4	-16,7

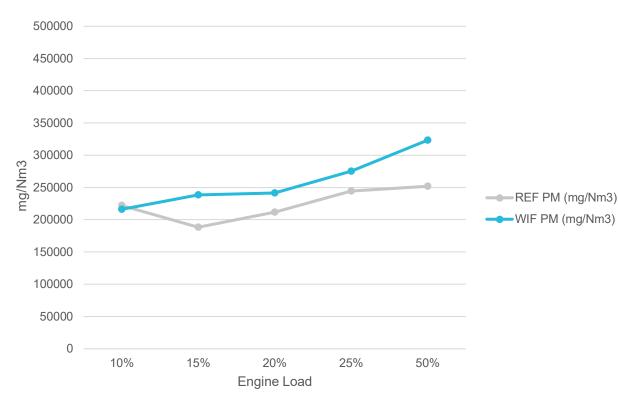
CO₂ results


Comparison Specific CO2 g/kWh

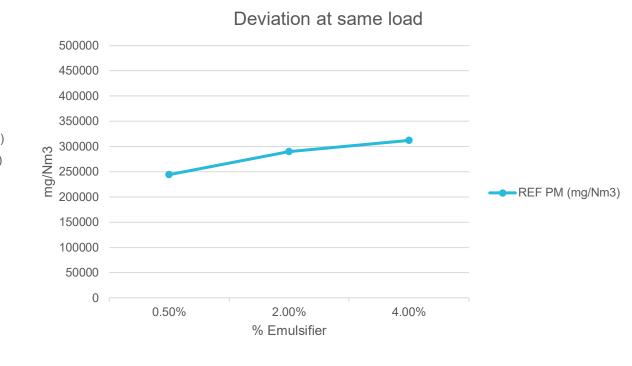
SFOC results – ISO g/kWh


SFOC Comparison in g/kWh

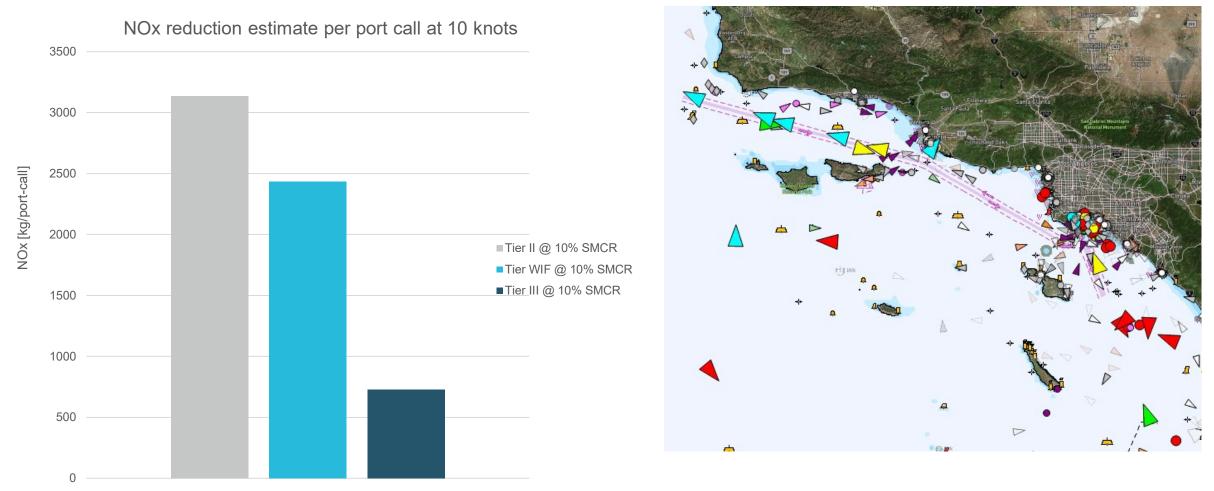
Filter smoke number (FSN)


Filter Smoke Number

Particular Matters results



PM measurement final test results


DO Ref.			WIF	r	r		
Test No.	Load	REF PM (mg/Nm3)	Test No.	Load	WIF PM (mg/Nm3)	Deviation	Percentage Deviation
T05_1	10%	221959,2874	T06_11	10%	216333,1599	-5626,1274	-3%
T05_3	15%	188284,9388	T06_8	15%	238332,7411	50047,8023	27%
T05_5	20%	211454,4975	T06_5	20%	241366,1617	29911,6642	14%
T05_7	25%	244219,4173	T06_2	25%	274923,7320	30704,3147	13%
T05_9	50%	251913,4438	T06_14	50%	323329,9738	71416,5300	28%

Test with increase of emulsifier during same load operation on the engine

NOx results compared to Tier II, Tier WIF & Tier III in and out of San Pedro Bay – 290nm voyage



- NOx reduction from Tier II to Tier WIF is estimated to 700 kg / 1543 lb per port call

Tier III certification and low load operation

	25%	50%	75%	100%
IMO NOx weighing factor	0,0545	0,1091	0,5455	0,2909

Water in Fuel System Expenses

CAPITAL EXPENSES

Hardware, Installation, Comissioning:

Depends on engine size

For this project we have been testing on a large engine. Which means bigger pumps, flow meters etc needed

Estimated price for a WIF system installed on board a large container vessel

650,000 USD

OPERATION EXPENSES

Emulsifier (8.5 USD per kg)

Power consumption of the WIF system (12kW/h approx)

Maintenance

1,200 USD per round trip

Business case

Assumptions:

Vessel making 8 trips per year to San Pedro Bay Ports Period of 3 years

1,200 x 8 x 3 = USD 28,800

Initial cost USD 650,000

Total = USD 678,800

Perfect incentive scenario

USD 678,800 / 24 port calls = USD 28,200 incentive per port call

16800 kg of NOx reduction in 3 years per vessel

NOx reduction cost with the WIF system:

It is estimated that 1 kilo / 2,2 lb NOx emission cost approx. 40 dollars.

MAN Energy Solutions Future in the making

Thank you very much!

7. Dual Fuel Conversion

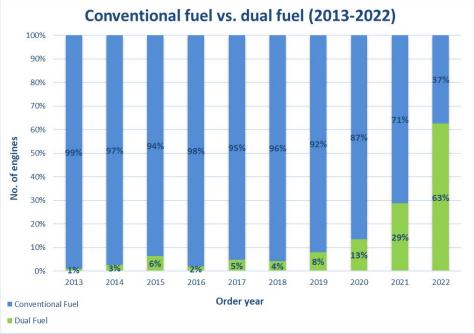
31

Alternative Fuels

Properties

Energy storage type	Specific Energy MJ/kg	Energy Density MJ/L	Required Tank Volume m ^{3. 1}	Supply pressure bar	Estimated PtX efficiency	Injection pressure bar	Emissio	on Reducti HFO T	-	ared To
MGO	42,7	35,9	1000	7-8		950	SO _x	NO _x	CO2	PM
Liquefied natural gas (LNG -162 °C)	50.0	22,4	1602	300	0,56	300	90-99%	20-30%	24%	90%
Liquid ethane gas (LEG -88 °C)	47,5	17,1	2099	380		380	90-97%	30-50%	15%	90%
liquefied petroleum gas (LPG -42,4 °C)	46,4	23,5	1527	50		600-700	90-100%	10-15%	13-18%	90%
Methanol	19.9	15,8	2272	10	0,54	500	90-97%	30-50%	5-10%	90%
Ethanol	26	21,2	1693	10		500				
Ammonia (liquid -33 °C)	18,6	11,5	3121	70	0,65	600-700	100%	Compliant with regulation	>95%	>90%
Hydrogen (liquid -253 °C)	120	8.5	4223		0,68				• • • •	
Marine battery market leader, Corvus, battery rack	0,29	0,33	108.787							
Tesla model 3 battery Cell 2170*. ²	0,8	2.5	14360							

• 1: Given a 1000 m³ tank for MGO. Additional space for insulation is not calculated for in above diagram. All pressure values given a high pressure Diesel injection principle.


• 2: Values for Tesla battery doesn't contain energy/mass obtained for cooling/safety/classification .

Dual fuel engines (on order & in service)

No. of e	engines		E	ngine type	Mk.	Methane
	60	G	95	ME-C-GI	10.5	Ethane
	3	S	90	ME-C-GI	10.5	Methanol
	29	G	90	ME-C-GI	9.5, 10.5	LPG
	78	G	80	ME-C-GI	9.5, 10.5	
	2	S	80	ME-C-GI	9.5	
	11	S	70	ME-C-GI	7, 8.2, 10.5	
538	229	G	70	ME-C-GI	9.2, 9.5, 10.5	
187*	2	L	70	ME-C-GI	8.2	
	15	G	60	ME-C-GI	9.5,10.5	
	83	S	60	ME-C-GI	10.5, 10.6	
	11	S	50	ME-C-GI	8.2,8.5, 9.5, 9.7	10
	7	G	50	ME-C-GI	9.5, 9.6	9
	2	G	45	ME-C-GI	9.5	8
	6	S	35	ME-C-GI	9.7	7
214	214	G	70	ME-C-GA	10.5	6
27	28	G	60	ME-C-GIE	9.5	gines
37 15*	5	G	50	ME-C-GIE	9.5	eng
15	4	S	50	ME-C-GIE	8.2	No. of engines
72	24	G	95	ME-C –LGIM	10.5	z g
17*	25	G	50	ME-B/ME-C –LGIM	9.3, 9.5, 9.6	2
17	23	S	50	ME-B-LGIM	9.3, 9.6	1
	103	G	60	ME-C-LGIP	9.2, 9.5,10.5	
139	7	S	60	ME-C-LGIP	10.5	
44*	23	G	50	ME-C-LGIP	9.6, 10.5	Conv
	6	S	35	ME-C-LGIP	9.7	Dual

Totals				
Total dual fuel engines	1000 engines			
Total power main engine	21.69 GW			
Total dual fuel engines in service	263 engines			

MAN ES orders received

* in service

MAN ES retrofit track record

22 vessels completed, 4 on order

MAN ES' track recor	d and in-house experience g	gained					
Nakilat	"Rasheeda"	LNG retrofit of 2 x 2s Main Engines on 1 x LNG Carrier					
Hapag Lloyd	"Brussels Express"	LNG retrofit of 2s Main Engine on 1 x Container vessel					
Navigator LLC	"Navigator Aurora"	Ethane retrofit of 2s Main Engine on 1 x Ethane Carrier					
BW LPG	15 vessels	LPG retrofit of 2s Main Engines on 15 x LPG Carriers					
Wessels Reederei	"Wes Amelie"	SNG retrofit of 4s Main Engine on 1 x Container vessel					
Baleària	"MV Napoles", "MV Sicilia"	LNG retrofit of 2 x 4s Main Engines on 2 x RoPAX vessels					
GIE Dragages-Ports	"Samuel de Champlain"	LNG remotorization of 2 x 4s Main Engines on 1 x Dredge					
On order							
Matson Inc.	"Daniel K. Inouye" + sister	LNG retrofit of 2s Main Engine on 1+1 x 3600 TEU					
Tianjin Southwest "Gas Gemini", "Gas Aquarius"		LPG retrofit of 2s Main Engine on 2 x LPG carriers					

November 14, 2022 34

A potential Methanol conversion

35

674 containership port calls to Los Angeles, Long Beach Ports between Oct 2021 and Oct 2022

IMO/LR	Ship Name	Operator	Port	Previous Port		Cyl	Engine type
					calls		
			Long				
9719056	DANIEL K. INOUYE	Matson Navigation Co Inc	Beach	Shanghai	12	7	S90ME-C10.5
			Long				
9477907	OOCL TAIPEI	Orient Overseas Container Line	Beach	Busan	9	10	S90ME-C9.2
			Los				
9645918	CSCL EAST CHINA SEA	COSCO Shipping Lines Co Ltd	Angeles	Prince Rupert	10	10	S90ME-C9.2
		··· •	Long				
9627978	OOCL BANGKOK	Orient Overseas Container Line	Beach	Yantian	9	12	S90ME-C9.2
			Long				
9719068	KAIMANA HILA	Matson Navigation Co Inc	Beach	Shanghai	13	7	S90ME-C10.5
			Long				
9645853	CSCL SPRING	COSCO Shipping Lines Co Ltd	Beach	Ningbo	9	10	S90ME-C9.2
			Long	Ŭ Ŭ			
9486087	OOCL UTAH	Orient Overseas Container Line		Busan	9	10	S90ME-C9.2

MAN Energy Solutions Future in the making

Thank you very much!

