PROPOSED AMENDED RULES 1146, 1146.1, 1146.2 & PROPOSED RULE 1100 WORKING GROUP #5

AUGUST 2, 2018 SCAQMD DIAMOND BAR, CA

Rule 1146 Series

Rule	Rule Applicability Size		
Rule 46	Boilers, steam generators, and process heaters	\geq 5 million Btu per hour (MMBtu/hr	
Rule 46.	Boilers, steam generators, and process heaters	>2 and <5 MMBtu/hr	
Rule 46.2	Natural gas-fired water heaters, boilers, and process heaters	≤ 2 MMBtu/hr	

Previous Recommendations for PARs 1146 and 1146.1 (May Set Hearing)

- □ Maintain existing NOx concentration limits
- □ Defer compliance for units between 2 20 MMBtu/hr if
 - Unit can demonstrate that NOx concentration is 12 ppm or less
 - Existing provisions allow natural gas units between 2 20 MMBtu/hr permitted at 12 ppm or less may defer compliance until burner(s) replacement (Rule limit = 9 ppm)
- □ Implementation schedule
 - 75% of units by heat input for Rule 1146 and 1146.1 units (including BARCTcompliant equipment) by Jan. 1, 2021; 100% of units by heat input by Jan. 1, 2022
 - Facilities committed to replace existing boilers/heaters (whole units) will be allowed until Jan. 1, 2023 to replace unit
 - Submit a complete permit application by 12 months after rule adoption

Previous Recommendations for PAR 1146.2 (May Set Hearing)

- Include commitment to conduct a technology assessment by January 1, 2022
 - If BARCT is the same as existing rule requirements (30 ppm), compliance by December 31, 2023
 - If BARCT is less than 30 ppm, a new compliance schedule will be developed
- □ Inventory data to be collected through:
 - Initial determination notifications and
 - Annual audit inspections

Public Comments at May 2018 Set Hearing

□ Summary of comments

- Program level CEQA and Socioeconomic analysis should be conducted
- NSR and permitting issues should be resolved before facilities transition out of RECLAIM
- BARCT levels may not be cost-effective, need to look at various levels of control
- BARCT should be defined for each class and category of equipment
- □ Since the May 2018 Set Hearing
 - BARCT has been re-assessed
 - Baseline Emissions
 - RECLAIM (various levels from 5 to 40+ ppm)
 - Non-RECLAIM (mostly 5 to 12 ppm, following Rule 1146 series)
 - Type of boilers (fire-tube vs. water-tube boilers)

BARCT Is defined in the California Health and Safety Code Section 40406 "...an emission limitation that is based on the maximum degree of reduction achievable, taking into account environmental, energy, and economic impacts by each class or category of source." BARCT can be retrofit, replacement, fuel change, material substitution, etc. BARCT is reassessed periodically and is updated as technology advances BARCT is an emission limitation, and is not limited to a particular technology, whether add-on or replacement. This definition does not preclude replacement technologies

SCAQMD F	Assessment of SCAQMD Regulator Requirements		
Size (MMBtu/hr) / Type	Rules 46 & 46. *	Compliance Date	Implementation Period (Sept 2008 Amendment)
≥75	5 ppm	January 1,2013	4 years
≥20 to <75	9 ppm	January I, 2012 thru January I, 2014	3 – 5 years
≥5 to <20	9 ppm	January I, 2013 thru January I, 2015	4 – 6 years
>2 to <5	9 ppm	January I, 2012 thru January I, 2014	3 – 5 years
Atmospheric Units (≤10)	I2 ppm	January 1, 2014	5 years
Thermal Fluid Heaters	30 ppm	September 5, 2008	Not Applicable

SCAQMD Regulatory Requirements

Assessment of SCAQMD Regulatory Requirements

17

□Current SCAQMD requirements are feasible and have been achieved since the 2008 amendment

- Units have met the Rule 1146 and 1146.1 existing emission limits
- Source test results have demonstrated compliance with existing emission limits

Other Regulatory **Rules from Other Air Districts** Requirements Reviewed other rules and regulations outside SCAQMD San Joaquin Valley APCD Bay Area AQMD Other Air Districts / Agencies* Less stringent than SCAQMD Same limits for units ≥ 20 Less stringent requirements (7 ppm vs. 5 ppm) for units MMBtu/hr for units of all sizes ≥75 MMBtu/hr Less stringent than SCAQMD More stringent than SCAQMD for units <20 MMBtu/hr (7 ppm vs. 9 ppm) for units ≥20 to <75 MMBtu/hr • Same limits for units <20 MMBtu/hr • Mitigation fee option

*Mojave Desert, Antelope Valley, Ventura County, San Diego County, Arizona, Delaware, Illinois, Indiana, Maryland, Minnesota, New Jersey, Texas, Wisconsin, Wyoming

Rules from Other Air Districts (cont.)

Other Regulatory Requirements

- More stringent emission limits required by San Joaquin Valley APCD for units between 20 and 75 MMBtu/hr
- Lower limits potentially feasible

Size (MMBtu/hr) / Type	South Coast AQMD Rule 1146 & Rule 1146.1	San Joaquin Valley APCD Rule 4320 & Rule 4307
≥75	5 ppm	7 ppm (Standard)
≥20 to <75	9 ppm	5 ppm (Enhanced)
≥5 to <20	9 ppm	9 ppm (Standard) 6 ppm (Enhanced)
2 to 5	9 ppm	9 ррт
Atmospheric Units (≤10)	12 ррт	I2 ppm
Thermal Fluid Heaters	30 ppm	9 ppm

*San Joaquin Valley APCD sources meeting the "enhanced" vs "standard" emission limit were given a longer implementation period

Vendor Discussions (cont.)

23

Atmospheric Units

- Current requirement at 12 ppm
- 9 ppm with ultra-low NOx burners is achievable for new units, but not feasible for all retrofit applications
- Lower NOx emissions are not feasible for all applications since the fluctuations in ambient conditions affect atmospheric units more than sealed combustion boilers

Thermal Fluid Heaters

- Current requirement at 30 ppm
- Thermal fluid heaters operate at significantly higher temperatures, which results in greater NOx emissions
- Units with ultra-low NOx burners guaranteed to meet 20 ppm or less are available
 - Retrofit units could meet 12 to 15 ppm
 - Some efficiency loss with premix combustion due to higher $\mathrm{O_2}$
 - New units for certain applications are capable of meeting 9 $\ensuremath{\mathsf{ppm}}$

Permi	tted Limits			Assessment of Emission Limits for Existing Units
RevieweUsed av	ed lowest permitted lin vailable information fro	nits from SCAQ	MD and SJVUA	PCD permits use
Size (MMBtu/hr)	Permitted Level Below Currently Adopted Rules	Control Technology	New or Retrofit	Type of Boiler
74	7 ppm	SCR	New	Water-Tube
69	5 ppm	SCR	Retrofit	Water-Tube
40 to 50	5 ppm	SCR	New	Water-Tube
29	5 ppm	ULNB	New	Fire-Tube
25	7 ppm	ULNB	New	Fire-Tube
21	5 ppm	SCR	Retrofit	Fire-Tube
19	5 ppm	SCR	Retrofit	Water-Tube
5 to 12	9 to 20 ppm	LNB	New and Retrofit	Thermal Fluid Heater 26
7	12 000	INR	Rotrofit	Thormal Eluid Heator

Г

Technologically Achievable Emission Limit				Limit
Group	Size (MMbtu/hr)	Existing Limit	Preliminary Recommendation	Supporting Evidence
Rule 1146 Group I	≥75	5 ppm via SCR	Same as existing limit	n/a
Rule I I 46 Group II	≥20 to <75	9 ppm via ULNB	5 ppm via SCR	 Permitted equipment Vendor discussion Source test records
Rule 46 Group 	≥5 to <20	9 ppm via ULNB	Fire-tube boilers: 7 ppm via ULNB Water-tube boilers: 9 ppm via ULNB	 Permitted equipment Vendor discussion Source test records
Rule 1146.1	2 to 5	9 ppm via ULNB	Fire-tube boilers: 7 ppm via ULNB Water-tube boilers: 9 ppm via ULNB	 Permitted equipment Vendor discussion Source test records
Atmospheric Units	≤10	12 ppm	Same as existing limit	n/a
Thermal Fluid Heaters	NA	30 ррт	12 ppm	 Permitted equipment Vendor discussion ³⁷ Source test records

Capital Cost (Equipment + Installation) Obtained cost estimates from 5 vendors Capital cost based on:

- Equipment sizeNOx emission limit
- Control technology (ultra-low NOx burner retrofits, SCR retrofits)
- Assumptions:
 - · Retrofits only
 - No major changes to existing units (no structural or foundation changes)
 - An equipment lifespan of 15 years for ultra-low NOx burner and 25 years for SCR
- Significant deviation in cost from one vendor
 - Compared average cost
 - with outliers
 - without outliers

Recurring a required for	annual cost for the addition the existing operation	onal energy consumption	above that alread
	Potential cost increase	Potential savings	Staff Proposes
Ultra-low NOx burner retrofit	Flue gas recirculation (FGR) uses higher dilution requiring additional energy	 Improved burner efficiency with higher turndowns Installation of O₂ sensors and variable frequency drive (VFD) can reduce electricity cost 	No additional energy cost
SCR system retrofit	Additional energy needed for higher pressure, ammonia vaporization, and induction fan	For units that currently use FGR, potential savings from lower use/removal of FGR	To account for savings from FGR reduction based on percentage of existing non- compliant units with FGR

Additio	nal Operation &	& Maintenance	e Cost
□ Recurrin materials □ Emissior	g annual cost for operat s not already part of exists ns monitoring considere	tion & maintenance (O8 sting operations d separately	kM) labor and
	Existing O&M	New O&M	Staff Proposes
Ultra-low NOx burner retrofit	Contracts already in place to maintain existing burner	Less maintenance and fewer repairs for retrofit burner	No additional O&M cost
SCR system retrofit	Existing boiler O&M with no SCR	Annual SCR maintenance checks	To account for additional SCR system O&M ⁴²

Additio	nal Monitorina	Cost	
Auditio		0031	
 Recurring (MRR) not Existing R requireme 	annual cost for additiona already required ECLAIM MRR requirements (except for reporting)	al monitoring, reporting, an ents comparable with lanc)	nd recordkeeping ling rule
	Existing MRR		Staff Proposes
Ultra-low NOx burner retrofit	Requirements for existing unit specified in Rule 2012	Requirements for retrofit unit specified in R1146 series	No additional MRR cost
SCR system retrofit	Not applicable for SCR retrofit	 Requirements for existing unit specified in R1146 series SCR system annual ammonia slip test 	To account for additional emissions testing 43

Determination of Cost Effectiveness and Emission
Reductions \Box Cost effectiveness is measured in terms of the control equipment
cost in dollars per ton of air pollutant reduced $Cost Effectiveness = \frac{Present worth value}{Emissions reductions over equipment life}$ \Box Present worth value of the control equipment is the capital cost
plus the annual operating cost over the life of the equipmentPresent worth value = Capital cost + (Annual operating cost × Present worth factor)

Cost E	Effectiv	veness		
Group	Size (MMBtu/hr)	Preliminary Recommended Emission Limit	Cost Effec	tiveness (\$/ton)
Rule 1146 Group I	≥75	5 ppm via SCR (existing limit)	5	\$16,000*
Pula 1144 Crows II	>20 to <75		For units > 12 ppm*	For units ≤ 12 ppm*
Rule 1146 Group II 220 to <75	5 ppm via SCK	\$29,000	>\$50,000	
Rule I I 46 Group II ≥20 to <75	>>>>		For units ≤ 12 ppm	
	/ ppm via ULNB for fire-tube boilers	\$13,000 when compliant	ce deferred until burner replacement	
Pula 1146 Group			For units > 12 ppm*	For units ≤ 12 ppm*
	≥5 to <20	7 ppm via ULNB for fire-tube boilers	\$29,000	\$14,000 when compliance deferred until burner replacement
			For units > 12 ppm*	For units ≤ 12 ppm*
Rule 1146.1	2 to 5	Same as above	\$48,000	\$13,000 when compliance deferred until burner replacement
Atmospheric Units	≤10	12 ppm via ULNB (existing limit)	S	\$34,000^
Thermal Fluid Heaters	NA	12 ppm via ULNB	\$39,000^	

Staff	Recommendation
-------	----------------

Group	Size (MMbtu/hr)	Preliminary Recommended Emission Limit	Requirements for Existing Units and for Group II, Group III and Rule 1146.1 Units ≤ 12 ppm
Rule 1146 Group I	≥75	5 ppm via SCR (same as existing limit)	n/a
Rule 1146 Group II	≥20 to <75	For units > 12 ppm: 5 ppm via SCR	To apply Group III limits to Group II units upon burner replacement
Rule 1146 Group III	≥5 to <20	For units > 12 ppm: Fire-tube boilers: 7 ppm via ULNB Water-tube boilers: 9 ppm via ULNB	Compliance deferred until burner replacement
Rule 1146.1	2 to 5	For units > 12 ppm: Fire-tube boilers: 7 ppm via ULNB Water-tube boilers: 9 ppm via ULNB	Compliance deferred until burner replacement
Atmospheric Units	≤10	12 ppm via ULNB (same as existing limit)	n/a
Thermal Fluid Heaters	NA	12 ppm	To apply 12 ppm limit to entire universe including non- RECLAIM units; Compliance deferred until burner replacement for units permitted at ≤ 20 ppm

Updated Schedule

Aug – Oct 2018

Working Group Meetings

- Aug 29, 2018 Public Workshop
- Oct 19, 2018 Stationary Source Committee
- Nov 2, 2018 Set Hearing
- Dec 7, 2018 Public Hearing

