

CLEAN FUELS PROGRAM ADVISORY GROUP AGENDA SEPTEMBER 14, 2023, 9:00 AM – 3:45 PM

Conference Room CC8 21865 Copley Drive Diamond Bar, CA 91765

TELECONFERENCE LOCATIONS (possible noticed outside locations)

Road Ross Hall 201
1664 N. Virginia Street Reno, NV 89557

A meeting of the South Coast Air Quality Management District Clean Fuels Program Advisory Committee will be held at 9:00 a.m. on Thursday, September 14, 2023, through a hybrid format of inperson attendance in Conference Room CC8 with CC2 as an overflow room for additional attendees at the South Coast AQMD Headquarters, 21865 Copley Drive, Diamond Bar, California, and remote attendance via videoconferencing and by telephone. Please follow the instructions below to join the meeting remotely. Please refer to South Coast AQMD's website for information regarding the format of the meeting, updates if the meeting is changed to a full remote via webcast format, and details on how to participate:

INSTRUCTIONS FOR ELECTRONIC PARTICIPATION
Join Zoom Webinar Meeting - from PC or Laptop
https://scaqmd.zoom.us/j/91964955642
Zoom Webinar ID: 919 6495 5642 (applies to all)
Teleconference Dial In +1 669 900 6833
One tap mobile +16699006833, 91964955642#

Audience will be allowed to provide public comment through telephone or Zoom connection.

INSTRUCTIONS FOR ELECTRONIC PARTICIPATION AT BOTTOM OF AGENDA

AGENDA

Members of the public may address this body concerning any agenda item before or during consideration of that item (Gov't. Code Section 54954.3(a)). If you wish to speak, raise your hand on Zoom or press Star 9 if participating by telephone. All agendas for regular meetings are posted at South Coast AQMD Headquarters, 21865 Copley Drive, Diamond Bar, California, at least 72 hours in advance of the regular meeting. Speakers may be limited to two (2) minutes each.

Welcome & Overview 9:00 - 11:00 AM		
(a)	Welcome & Introductions	Aaron Katzenstein, Ph.D., Deputy Executive Officer *
(b)	Grant Updates and Opportunities	Mei Wang, Assistant Deputy Executive Officer *
(c)	Goals for the Day	Vasileios Papapostolou, Sc.D., Technology Demonstration Manager*
(d)	Tire Emissions Measurement, and Comparative VOC Analysis of European and US Products	Nick Molden, Ph.D., Emissions Analytics
(e)	Blending Consumer Air Quality Sensor Data with Regulatory Monitoring Data to Reduce Exposure to Poor Air Quality	Scott Epstein, Ph.D., Program Supervisor**
(f)	Feedback and Discussion	Advisors and Experts
(g)	Public Comment (2 minutes/person)	

	Alternative Power Generation		
1.	. 11:00 AM – 12:30 PM		
(a)	Challenges in Deploying Heavy-Duty Charging Infrastructure	Sam Cao, Ph.D., Program Supervisor*	
(b)	Hyliion Overview and KARNO Generator	Bobby Cherian, Hyliion	
(c)	Renewable Power Anytime, Anywhere	Craig Klaasmeyer, Kaizen Clean	
(d)	Feedback and Discussion	Energy Advisors and Experts	
(e)	Public Comment (2 minutes/person)		
Lunch 12.30 pm 1.30 pm			

Lunch		
12:30 PM - 1	1:30 PM	

2.	Vehicle Technologies 1:30 PM – 3:00 PM	
(a)	Vehicle Electrification Technologies	Seungbum Ha, Ph.D., Program Supervisor*
(b)	Electric-powered Trailer for Heavy-Duty Vehicles	Bert Kaufman, Range Energy
(c)	Hydrogen Internal Combustion Engines	Jim Nebergall, Cummins
(d)	DEUTZ Solution Park – H2	Christoph Scholtes, DEUTZ
(e)	Feedback and Discussion	Advisors and Experts
(f)	Public Comment (2 minutes/person)	
3.	Wrap-up 3:00 PM – 3:45 PM	
(a)	2024 Clean Fuels Plan Update & Wrap-up	Vasileios Papapostolou, Sc.D., Technology Demonstration Manager*

(b) **Advisor and Expert Comments** A11

Public Comment (2 minutes/person)

Other Business

Any member of the Advisory Group, or its staff, on his or her own initiative or in response to questions posed by the public, may ask a question for clarification; may make a brief announcement or report on his or her own activities, provide a reference to staff regarding factual information, request staff to report back at a subsequent meeting concerning any matter, or may take action to direct staff to place a matter of business on a future agenda. (Gov't. Code Section 54954.2)

Public Comment Period

At the end of the regular meeting agenda, an opportunity is provided for the public to speak on any subject within the Advisory Group's authority that is not on the agenda. Speakers may be limited to two (2) minutes each.

Document Availability

All documents (1) constituting non-exempt public records; (ii) relating to an item on the agenda for a regular meeting; and (iii) having been distributed to at least a majority of the Advisory Group after the agenda is posted, are available by contacting Donna Vernon at 909-396-3097 from 7:00 a.m. to 5:30 p.m., Tuesday through Friday, or send the request to dvernon@aqmd.gov.

^{*} South Coast AQMD Technology Advancement Office

^{**} South Coast AQMD Planning, Rule Development, and Implementation Division

Americans with Disabilities Act

Disability and language-related accommodations can be requested to allow participation in the Clean Fuels Program Advisory Group meeting. The agenda will be made available, upon request, in appropriate alternative formats to assist persons with a disability (Gov't Code Section 54954.2(a)). In addition, other documents may be requested in alternative formats and languages. Any disability or language-related accommodation must be requested as soon as practicable. Requests will be accommodated unless providing the accommodation would result in a fundamental alteration or undue burden to South Coast AQMD. Please contact Donna Vernon at 909-396-3097 from 7:00 a.m. to 5:30 p.m., Tuesday through Friday, or send the request to dvernon@aqmd.gov.

INSTRUCTIONS FOR ELECTRONIC PARTICIPATION

Instructions for Participating in a Virtual Meeting as an Attendee As an attendee, you will have the opportunity to virtually raise your hand and provide public comment.

Before joining the call, please silence your other communication devices such as your cell or desk phone. This will prevent any feedback or interruptions during the meeting.

Please note: During the meeting, all participants will be placed on Mute by the host. You will not be able to mute or unmute your lines manually.

After each agenda item, the Chairman will announce public comment.

Speakers will be limited to a total of three (3) minutes for the Consent Calendar and Board Calendar, and three (3) minutes or less for other agenda items.

A countdown timer will be displayed on the screen for each public comment.

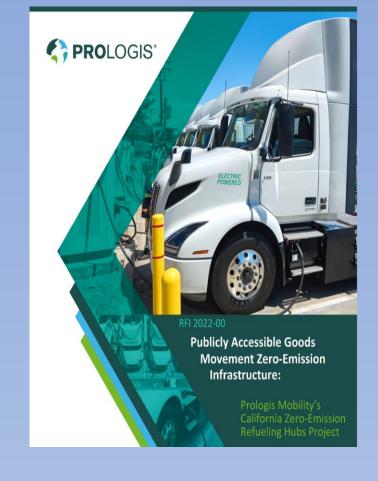
If interpretation is needed, more time will be allotted.

Once you raise your hand to provide public comment, your name will be added to the speaker list. Your name will be called when it is your turn to comment. The host will then unmute your line.

Directions for Video ZOOM on a DESKTOP/LAPTOP:

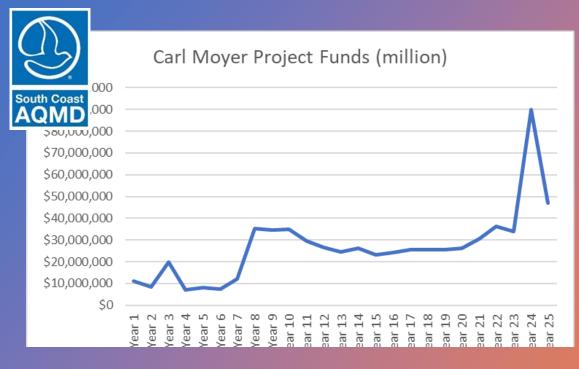
- If you would like to make a public comment, please click on the "Raise Hand" button on the bottom of the screen.
- This will signal to the host that you would like to provide a public comment and you will be added to the list.

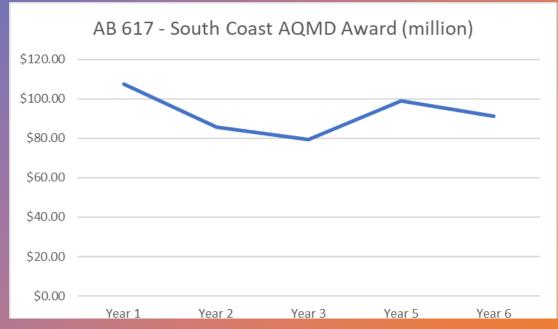
Directions for Video Zoom on a SMARTPHONE:


- If you would like to make a public comment, please click on the "Raise Hand" button on the bottom of your screen.
- This will signal to the host that you would like to provide a public comment and you will be added to the list.

Directions for TELEPHONE line only:

• If you would like to make public comment, please **dial** *9 on your keypad to signal that you would like to comment.




Grant Updates and Opportunities

Mei Wang

Assistant Deputy Executive Officer

Technology Advancement Office Incentive Funding Overview

- Carl Moyer (~\$45M)
 - Established in 1998
 - Initial funding of \$11M
 - AB1274 provided funding increase
- Community Air Protection Program (\$190M)
- Clean Cars 4 All (\$40M)
- FARMER (\$700K)
- Prop 1B (\$500M total)

Technology Demonstration Funding Sources

- Clean Fuels Program Fund (~\$13M annually)
- CEC
- DOE
- EPA
- CARB
- DOT
- San Pedro Bay Ports Technology Advancement Program (TAP)
- MSRC
- Special funds

2022-2023 Awarded Demonstration Projects

CalSTA- Port and Freight Infrastructure Program (PFIP) Grant

Freight Air Quality Solutions Award: \$76,250,003

 Hydrogen Fuel Cell Short Line Locomotive for Cargo Transport

• Partner: Wabtec

Project cost: \$42 million

• Completion:2028

376 DCFC installation and 19 H2 dispensers

Partner: Prologis

• Project cost: \$195 million

• Completion: 2025

Onsite generation and battery storage

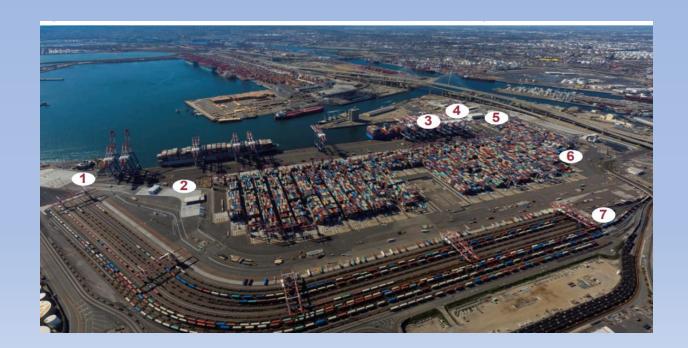
2022-2023 Awarded Demonstration Projects

EPA Targeted Airshed Grants Program (TAG) Awards: \$16M

- Plug-in Hybrid Tugboat with Hydrogen Fuel Cell powered charging system
 - Partners: Crowley
 - Project cost: \$43.5M
 - Completion:2025
- Commercializing Heavy-Duty Fuel Cell trucks
 - Partners: Daimler Trucks North America, Cummins Inc., Shell and Penske Truck Leasing
 - Project cost:\$6.9M
 - Completion: 2026
- Battery Electric Asphalt Compactors
 - Partners: Volvo Technology of America
 - Project cost: \$1.9M
 - Completion:2024

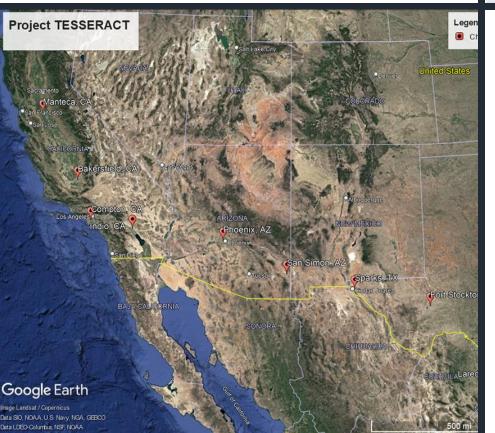
2022-2023 Awarded Demonstration Projects

EPA Clean Air Initiative (CATI) Awards


- Breathmobile Deployment
 - Partners: Arrowhead Regional Medical Center
 - Project cost: \$1.2M
 - Completion: 2024
- ZE Power Take Off System for MD Work truck Demonstration
 - Partners: Odyne, LADWP, Edison
 - Project cost: \$1.1M
 - Completion: 2024

2022-2023
Proposed
Technology Demonstration
Projects

Port Infrastructure
Development
Program
(PIDP) Maritime
Administration


- Installation of electric charging units and electric infrastructure needed to complete the nation's first full zeroemission (ZE) terminal.
- Partner: Long Beach Container Terminal
- Cost: \$85M (requested \$68M)
- Completion: 2027

2022-2023 Proposed Technology Demonstration Projects

Charging and Fueling Infrastructure Grant (Federal Highway Administration)

- TESSERACT-Transport Electrification
 Supporting Semi Operating in AZ, CA and TX
- Installation of 72 750-kW DCFC and 36 250-kW CCS-1, BESS
- Partner: Tesla
- Cost: \$127M (requested \$97M)
- Completion: 2027

2022-2023 Proposed Technology Demonstration Projects

Charging and Fueling Infrastructure Grant (Federal Highway Administration)

West Coast Truck Charging and Fueling Corridor Project

- Multistate project supports ZE truck deployment along the major freight centers across California, Oregon and Washington
- Partners: CEC, CalTrans, WA, OR, POLA, POLB, MSRC, City of LA

Upcoming Grant Opportunities

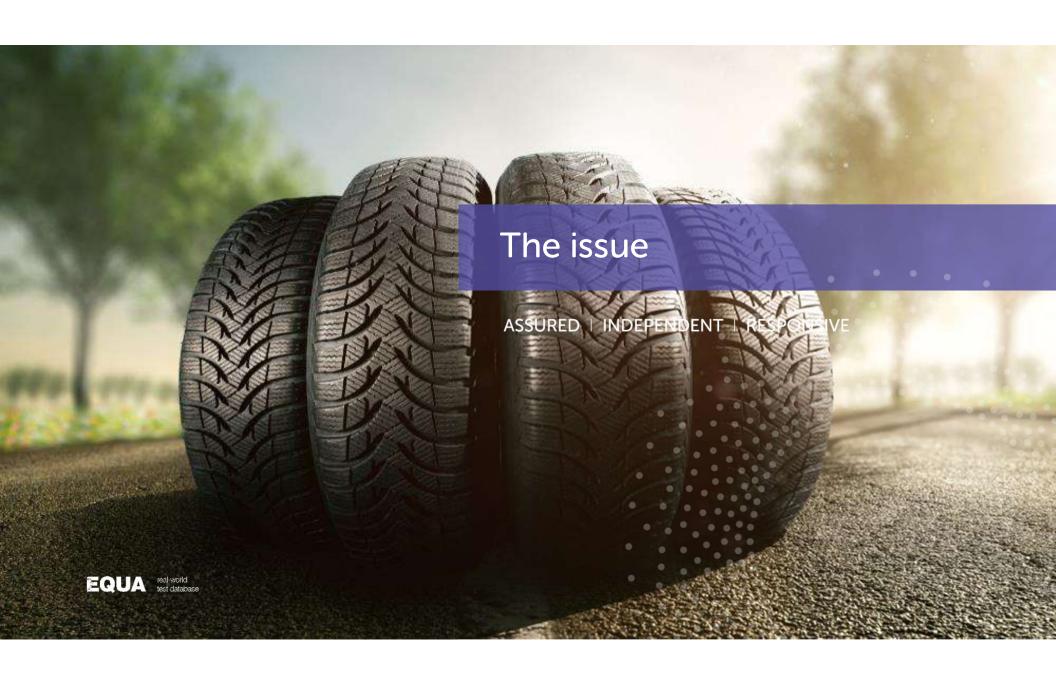
Current Notices of Funding Opportunities:

- CARB Advanced Technology Demonstration and Pilot Projects (Due 10/12/23): \$225M
- EPA DERA National Program (Due: 12/1/2023): \$115M

Upcoming NOFOs Pending Release:

- FRA CRISI (Fall 2023)
- EPA Climate Pollution Reduction Implementation Grants (September 2023):\$4.6B
- EPA Reduction of Air Pollution at Ports (2024):\$3B
- EPA Clean heavy-Duty Vehicles (2024):\$1B
- 2023 EPA Target Airshed Grant Program (NOFO likely 2024):\$66M

Questions



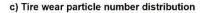
Agenda

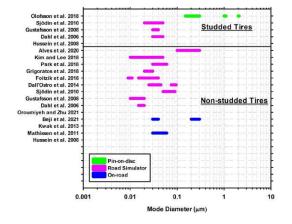
- How prevalent are tyre wear emissions?
- To what extent do they include micro plastics?
- What are their health and environmental effects?
- What is the chemical profile of tyres?
- How do European and US tyres compare?
- What are the options for reducing the impact?

Omnipresence of tyre wear emissions

- 6 million tonnes of tyre wear globally per year
- Or 4 kg per car per year
- Excluding 1-2 billion end-of-life tyres per year
- Ultrafine particles (<100 nm) are airborne before eventually settling
- Fine particles settle on soil close to roadway
- Larger particles wash into the drainage system
- Multiple vectors for human inhalation or ingestion
- 135 ng of 6PPD and 6PPD-quinone in urine of average adult per day

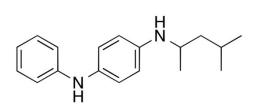
Rapidly declining tailpipe emissions

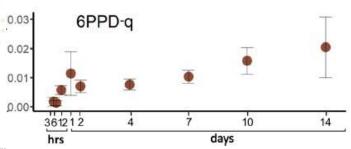

- 37 mg/km tyre wear is x8 maximum permissible tailpipe mass emissions
- 0.02 mg/km is actual, real-world tailpipe mass emissions from latest cars
- Tyres are x1,850 times more polluting on this measure



Ultrafine particles from tyres

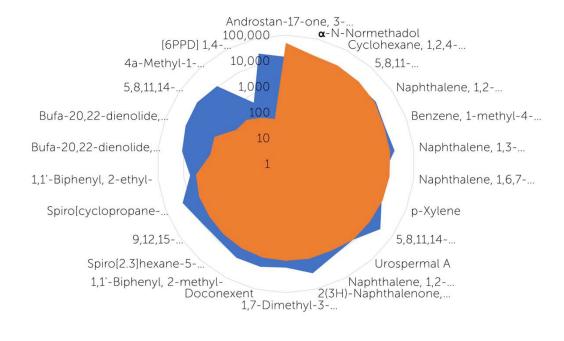
- On-road test with 'normal' dynamics
- 11% of fine particle mass is below 2.5 µm diameter
- This mass accounts for almost 100% of particle number
- And ultrafines account for 92% by number
- Other potential source of ultrafines is from combustion, but influence from other vehicles eliminated
- Results borne out in academic literature
- Tyres are simultaneously a problem for air, soil and water


Particulate m ass	m.g/km
PM 10	36.5
PM 2.5	4.1
PM 2.5 proportion of PM 10	11%
Ultrafine proportion of PM 10	0%
Particu late num ber	# x 10 ¹¹ /km
Particulate num ber	# x10 ¹¹ /km
Particulate num ber Down to 23 nm	# x10¹¹/k m 1.1
Down to 23 nm	1,1
Down to 23 nm	1,1


Derivative products

- Formation of 6PPD-quinone by oxidation of 6PPD preservative
- 6PPD-quinone killing coho salmon and trout in US
- Absorbed through roots of lettuce


N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine, aka 6PPD



Secondary pollutants

- Secondary organic aerosol formation from off-gassed VOCs reacting in air
- Mainly from tyre sidewall, which can be different chemical composition from tread
- SOA Yield of 4.01 µg/m³ from toluene in recent research in Shanghai

■ Outside tread ■ Outside sidewall

Experimental approach

ASSURED | INDEPENDENT | RESPONSIVE

Concept

Tyre wear rate

X

Chemical speciation

X

Compound hazard

=

Potential environmental impact

On-vehicle sampling – principles

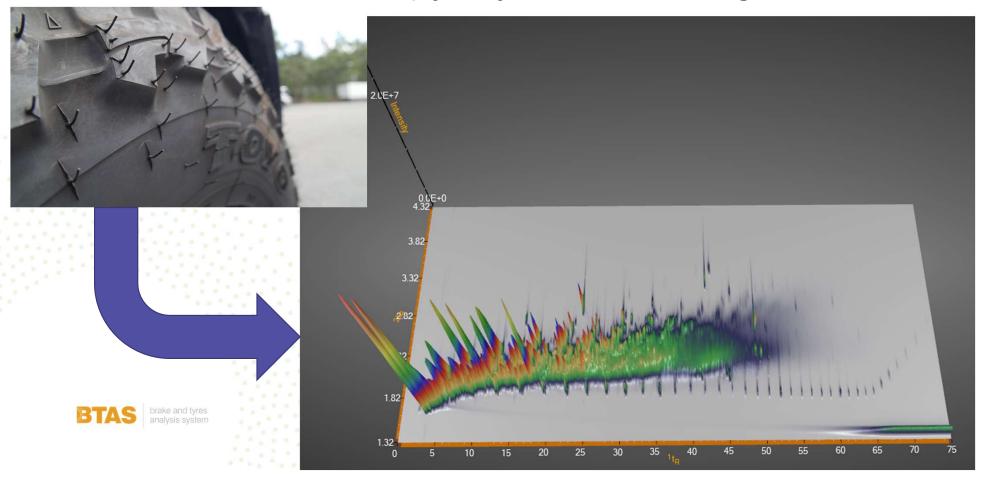
- Universal fitment across vehicles
- Fits to any and all wheels on a vehicle
- No vehicle modification required
- Articulates as the vehicle steers
- Safe and road-legal
- Can be coupled with any detector
- And collecting plates/receptacle
- Patent-pending
- > Mass, number and physical collection

Chemical fingerprinting

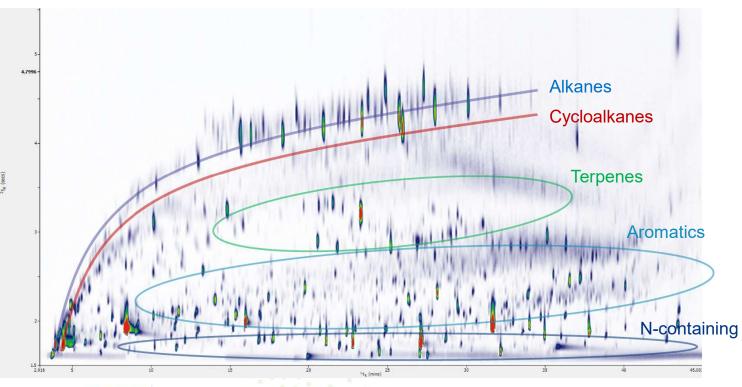
- Two-dimensional gas chromatography with mass spectrometry
- INSIGHT flow modulator from SepSolve Analytical for separation
- BENCH-TOF time-of flight mass spectrometer
- Multi-stage pyrolysis method

Pyrolysis sampling

- Are the compounds measured really in the originally tyre?
- Does the high temperature of the pyrolysis lead to compounds breaking down?
- Due to the very rapid heating and then flushing out of the hot zone, the pyrolysates are likely to remain unchanged, with secondary reactions and pyrolysate aggregation occurring rarely (Shin Tsuge, 2012) (Xiao-Ming Ma, 2014).
- The degradation process is useful for understanding the structure of the polymer but also for determining what smaller molecules could possibly be formed and for example, leach into the environment (Ladak, 2021) (Greta Biale, 2021).



Method development


- Objective to determine all compounds in tyre as sold to user
- Estimate potential to leach organic chemicals over time
- Quantification of measurement uncertainty National Physical Laboratory, UK
- Required development of specialist spectral library
- Peer reviewed
- Allow fair comparison between different tyres

Two-dimensional pyrolysis chromatogram

Functional group classification

- Wide-ranging analytes identified
- Alkanes: lungs, liver, kidney, brain
- Cycloalkanes: headaches, dizziness
- Terpenes: aromas
- Aromatics: carcinogens
- N-containing: carcinogens

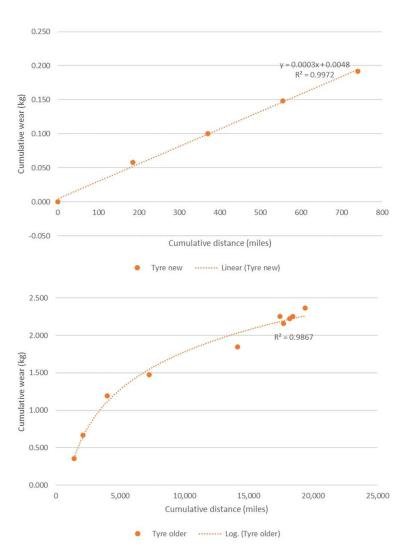

Hazards

Hazard code	Description
H300	Fatal if swallowed
H301	Toxic if swallowed
H302	Harmful if swallowed
H303	May be harmful if swallowed
H304	May be fatal if swallowed and enters airways
H305	May be harmful if swallowed and enters airways

- Globally Harmonized System of Classification and Labelling of Chemicals (GHS) United Nations' standardised system
- Compounds identified CAS Registry Number, unique identifier assigned by US Chemical Abstracts Service
- European Chemicals Agency database of manufacturer disclosures
- 'Hazard codes' describe different effects, from irritants to carcinogens
- Each compound can have multiple hazard codes
- Which can be weighted together using a severity index

Overall toxicity factor = $\sum_{i=1}^{n} Number of hazard codes_{i}$ x Compound concentration in sample (μ g/mg)_i

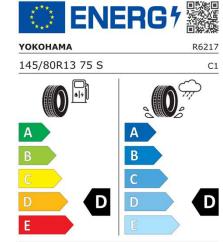
Comparative tyre wear results


- 18 different models of tyre
- Tested from new
- 90% motorway driving by distance
- Public highway
- Average total distance 3,300 miles
- 108 mg/mile mean

Time#	M anufacturer	W ear <i>r</i> ate
		(mg/km)
1	Continental	161
2	M ichelin	61
3	Sum itom o	38
4	Firestone	73
5	Avon	45
6	Kum ho	75
7	Yokoham a	89
8	Goodyear	75
9	Apolb	61
10	Kum ho	51
11	M ichelin	81
12	H ifly	76
13	Kum ho	17
14	Rotola	66
15	Taurus	70
16	Bridgestone	46
17	N an kang	87
18	Snow Road	44
	Average	67

Longitudinal results

- Continental Contisport 6 tyres on Mercedes C-Class/unladen
- Tyres tested from new
- Wear rate linear up to ~1,000 km
- Then approximately logarithmic trend up to ~30,000 km
- Shape of cumulative wear differs between models



Regional labelling

- Official tyre labels exist in multiple regions
- Current focus on rolling resistance, grip, weather and noise in Europe
- Closest proxy is 'tread wear rating' in US
- Fuel economy is pre-eminent consideration in Europe
- Compared to durability in the US
- Differences likely to be seen in composition of tyres between regions

Comparison by target market – light duty

- 228 tyres analysed across Europe and North America
- Sourced from retail outlets
- Vent sprues from unused tyres
- Significantly lower aromatic content in US tyres, with lower toxicity potential
- Fewer alkanes in US tyres, but higher toxicity potential on average

	Europe	North America	Variance
Tyres ana lyæd	185	43	
Average arom atics concentration (ng/m g)	226,021	94 , 181	-58%
Hum an toxicity potential	42	26	-38%
Marine toxicity potential	4	2	-37%
Average alkanes concentration (ng/m g)	123,907	70,354	-43%
Hum an toxicity potential	20	24	17%
Marine toxicity potential	3	3	-13%

Comparison by target market – heavy duty

- 55 tyres analysed
- Sourced from retail and New York City authorities
- Less aromatics and alkanes in US tyres
- High marine toxicity potential from US tyres, but mixed effects on human health

	Europe	North America	Variance
Tyres analysed	16	39	
Average arom atics concentration (ng/m g)	95 , 142	64 , 122	-33%
Hum an toxicity potential	26	21	- 20%
Marine toxicity potential	2	2	14%
Average alkanes concentration (ng/m g)	133,963	100,328	- 25%
Hum an toxicity potential	26	34	34%
Marine toxicity potential	4	4	13%



Aromatics by manufacturer – light duty

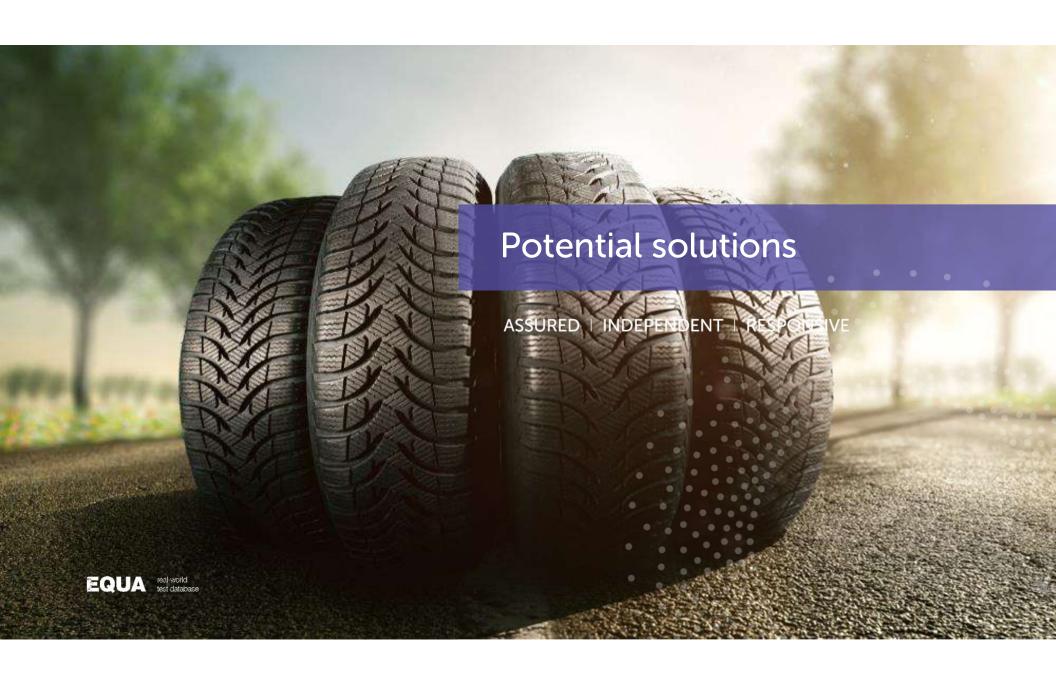
- Segmenting by manufacturer to achieve closer to like-for-like comparison
- Compound data available from both regions for 7 OEs
- One-third less aromatics in US tyres, but varies

ng/m g	Europe	North America	Variance
Bridgestone	111,252	99,670	-1 0%
Continental	183 , 670	111 , 757	- 39%
Dunbp	98 , 757	95 , 704	- 3%
Goodyear	217,062	92 , 521	- 57%
Hankook	111 , 974	90,577	- 19%
Kum ho	182,072	90,015	- 51%
M ichelin	235,297	108,862	- 54%
Average	162,869	98 444	-33%

Compounds of concern – marine

- Target compounds in tyres sources including ChemSec SIN list, REACH, PEWS
- Average concentration of compound, where present in at least 10 European tyres
- Thousands of potential concerns can be seen at low concentrations
- 6PPD is not the only compound of concern for marine life

Com pound nam e	Chemicalformula	Europe	Am erican	Po tential effects – aquatio	O therpotentialeffects - hum an
		average	average		
		concentration	concentration		
		(ng/mg)	(ng/mg)		
N-(1,3-dim ethybuty))-N 'phenyl-p-phenylenediam ine	C ₁₈ H ₂₄ N ₂	531	513	Very toxic, bng-lasting	Hum an fertility, skin imitation
D in ethylælenide	C ₂ H ₆ Se	305		Very toxic, bng-lasting	Toxic finhaled, swallowed; organ dam age
N aphtha ene	C 10H 8	229	117	Very toxic, bng-lasting	Ham fulifswalbwed; suspected carcinogen
Fliorene	C 13H 10	152	140	Very toxic, bng-lasting	
1,2-dhydro-2,2,4-trin ethylquinoline	C ₁₂ H ₁₅ N	148	53	Toxic, bng-lasting	Hamm fulifswalbwed
N-isopropyln phenyl-p-phenylenediam ine [PPD]	C ₁₅ H ₁₈ N ₂	101		Very toxic, bng-lasting	Ham fulifswalbwed; skin imiation
Chrysene [CHR]	C ₁₈ H ₁₂	100		Very toxic, bng-lasting	Potentialcarcinogen; suspected genetic effects
Retene [RET]	C ₁₈ H ₁₈	29	1,083	Very toxic, bng-lasting	



Compounds of concern – human

• Pattern of compounds of concern very different between Europe and America

Com pound nam e	Chem icalform ula	Europe average concentration (ng/m g)	Am erican average concentration (ng/mg)		0 therpo tential effects – aquatic
Benzene, 1,3-dim ethyl-	C 8H 10	2,352		May be fatalifswalbwedorinhaled; serious	Ham ful, bng-lasting
	0 10			eye, respiratory imitation	
p-Xylene	C 8H 10	2,142	210	May be fatalifswalbwedorinhaled; serious	Hamm ful, bng-lasting
	0 10			eye, respiratory imitation	
Benzene	C ₆ H ₆	1,077	171	Maybe fatalifswalbwedorinhaled;organ	
				dam age; potential carcinogen; genetic effects;	
				serious eye imitation	
Indene	C ₉ H ₈	850	166	May be fatalifswalbwedorinhaled; serious	Toxic, bng-lasting
				eye, skin imitation; suspected carcinogen	
Styrene	C ₈ H ₈	681	30	May be fatalifswalbwedorinhaled; eye, skin	Hamm ful, bng-lasting
				imitation; potential carcinogen	
Ethybenzene	C 8H 10	269	520	Potentialcarcinogen; genetic effects; harm fulif	Ham ful, bng-lasting
				sw allow ed	
Aceton trile cyanom ethane	C ₂ H ₃ N	248	14	Toxic if swallowed, inhaled or skin contact; skin	Toxic, bng-lasting
				and eye dam age; potential carcinogen	
Benzothazole [BTZ]	C ₇ H ₅ NS	222	130	Toxic If sw allow ed, inhaled or skin contact; eye	
				dam age; organic dam age	
Benzothizoe,2-phenyl-	C ₁₃ H ₉ NS	77	197	Serious eye imitation	
2-(n ethylthio)benzothiazole [2-M TBT]	C ₈ H ₇ NS ₂	33	97	Serious eye, skin and respiratory imitation	

Reduce wear rates

- Almost a factor of x10 from the slowest to fastest wearing models
- 28% reduction would be achieved by eliminating fastest wearing half of the market
- Need to consider trade-offs with safety, noise and efficiency
- Proposed Euro 7 vehicle certification includes placeholder for tyre wear limits
- Future introduction would put downward pressure on wear rates
- But with potential trade-off with increased toxicity

Reduce potential toxicity

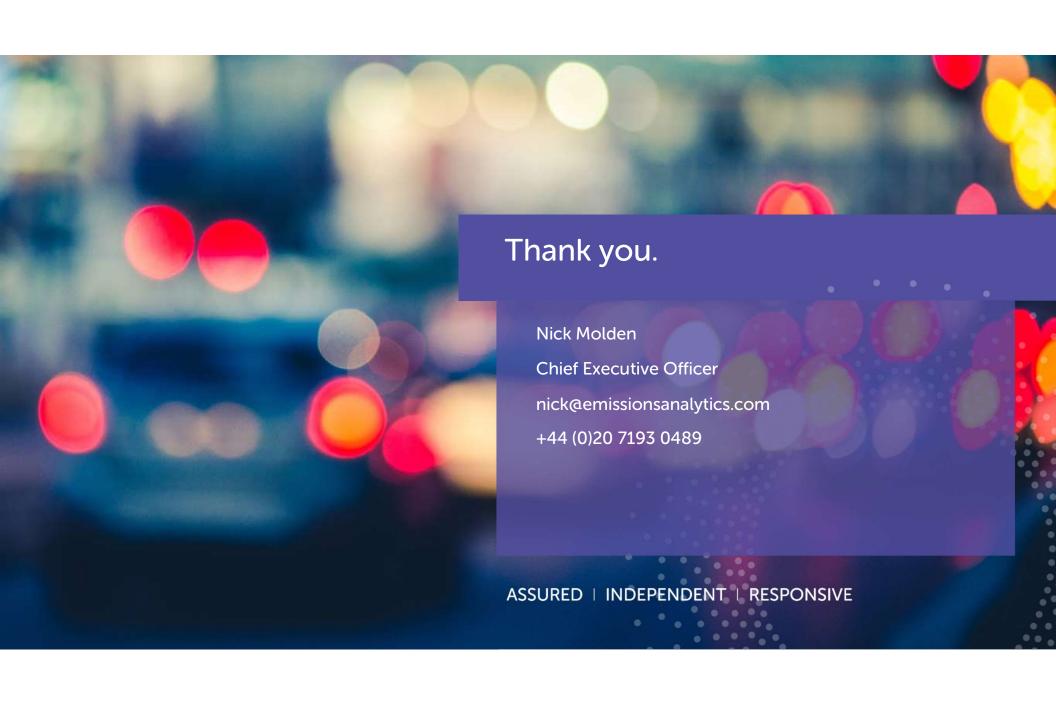
- Opportunity to remove the highest potential toxicity products
- Any scoring system would need to be validated against toxicological experiments
- Chemical disclosure could be extended, building on ECHA work
- Specific, high-toxicity chemicals could be banned
- Manufacturers could be forced to consider alternatives as in California
- Limit values could be set on target chemicals as REACH already does
- Consumer labelling to influence demand

Next steps

- Automatic target screening
- Tracking and benchmarking latest formulations – especially "green" tyres
- Fingerprinting environmental samples

 quantifying proportion of tyre
 material
- Optimising on-road sample collection
- Toxicological studies underway with five universities

Target list	Conc	entration per ty	re	Substances found per tyre
	Min	Avg	Max	Avç
	μg/mg	µg/mg	μg/mg	# (% of list
Weighted average for all lists ?		18.928		19 (7.13%
CalSAFER	3.827	34.877	110.296	29 (0.88%
ChemSec SIN	0.032	4.808	56.798	8 (0.54%
Emissions Analytics Toxicity	56.052	151.782	333.464	172 (4.61%
EPA Hazardous Air Pollutants	0.435	22.566	84.113	10 (4.98%
GADSL	0.123	13.665	83.932	13 (0.22%
NORMAN TIRECHEM	0.018	0.839	3.866	2 (11.37%
PEWS	0.038	2.165	37.163	4 (2.04%
REACH	0.002	0.112	1.658	1 (13.39%
TIP TRWP Markers	0.001	3.066	23.349	2 (58.08%



Summary

- Tyre wear emissions are all around and inside us
- Encompassing larger and smaller particles, but tyres also offgas VOCs
- Aromatics and alkanes are on average much lower in American tyres
- Likely to be deliberate to match market preferences
- Heavy duty tyres are lower in aromatics
- Averages hide large variances between tyre models
- > Significant work still to do to improve on-vehicle collection, fingerprinting, environmental sampling and quantification

ASSURED | INDEPENDENT | RESPONSIVE

Assured

Emissions testing in real-world conditions brings challenges that experience anticipates and expertise overcomes. We deliver.

Independent

Objectivity and candour are the driving forces in all our work, so you know the facts.

Responsive

We're fast on our feet so we can conduct emissions testing when and where we're needed.

Our Belief

When it comes to the pursuit for improved air quality, we believe in the power of clarity, transparency and integrity. With real-world data we can meet emissions challenges – instilling trust and confidence in our industry partners and public.

It's with our commitment and independence we are able to make a significant contribution toward positive change and to achieve enduring results.

Blending Consumer-Grade Air Quality Sensor Data with Regulatory Monitoring Data to Help Reduce Exposure to Poor Air Quality

Outline

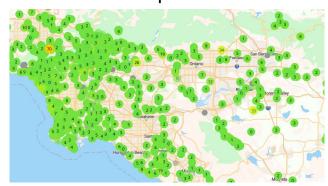
- How real-time air quality is reported to the public
- Treatment of consumer-grade sensors
- Blending of regulatory monitoring data, sensor data, and model data
- How accurate is the AQI map?
- Ongoing improvements to the AQI Map

Air Quality Index (AQI)

Daily AQI Color	Levels of Concern	Values of Index	Health Recommendations
Green	Good	0 to 50	Air quality is satisfactory, and air pollution poses little or no risk.
Yellow	Moderate	51 to 100	Air quality is acceptable; unusually sensitive people should consider limiting prolonged outdoor exertion.
Orange	Unhealthy for Sensitive Groups	101 to 150	Sensitive groups should limit prolonged or heavy outdoor exertion
Red	Unhealthy	151 to 200	Some members of the public may experience health effects; sensitive groups should avoid prolonged time outdoors.
Purple	Very	201 to	Health alert: Sensitive groups should avoid all outdoor physical
Pulple	Unhealthy	300	activity. Everyone else should avoid prolonged or heavy outdoor activity.
Maroon	Hazardous	301 and higher	Health warning of emergency conditions: everyone is more likely to be affected. Everyone should avoid all physical activity outdoors.

Sensitive groups are people with heart disease, pregnant women, children and older adults, people with lung disease, such as asthma

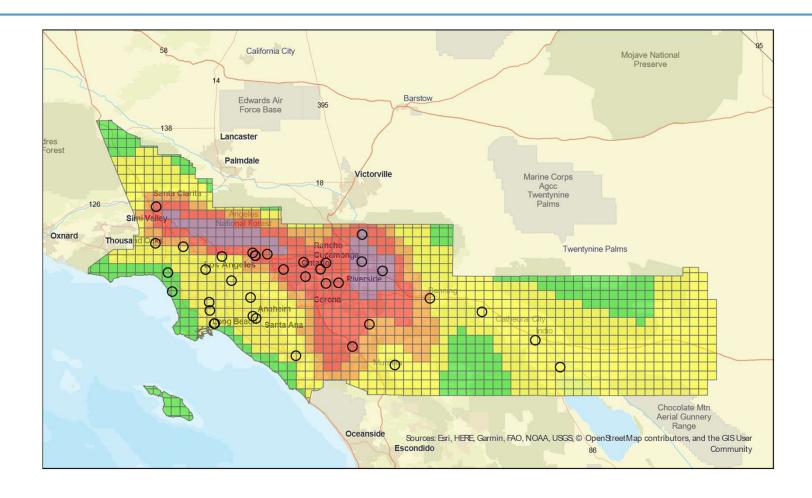
Methods of Displaying Real-Time Air Quality Data



Liceation Liceation Provided Services Serv

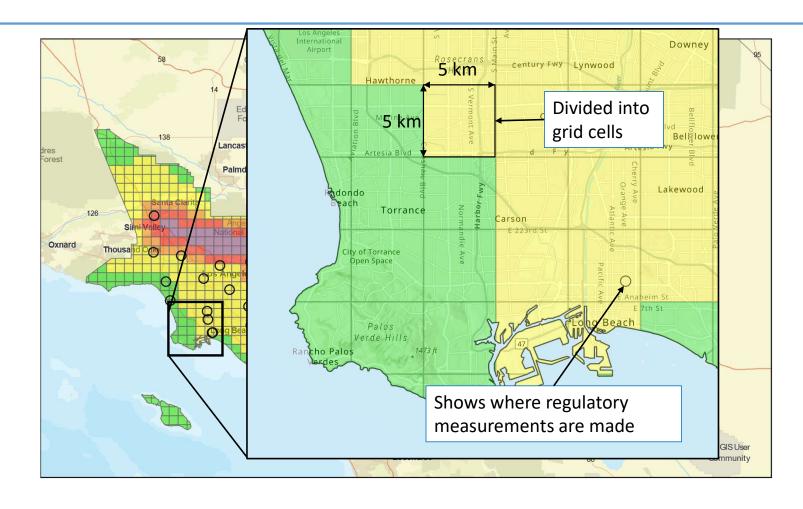
AirNow

PurpleAir



Limitations identified:

- > Location of monitor that is driving an area's current AQI is unclear
- > Distance-weighted interpolation doesn't account for complex terrain
- > Public often looks at multiple maps to understand current air quality (PurpleAir map) and does not interpret consumer-grade sensor data appropriately
- Resolution is too large to accurately represent localized events (i.e. "Proxy")
- For maps showing point-data, some locations may have AQI values that do not consider measurements from all relevant pollutants

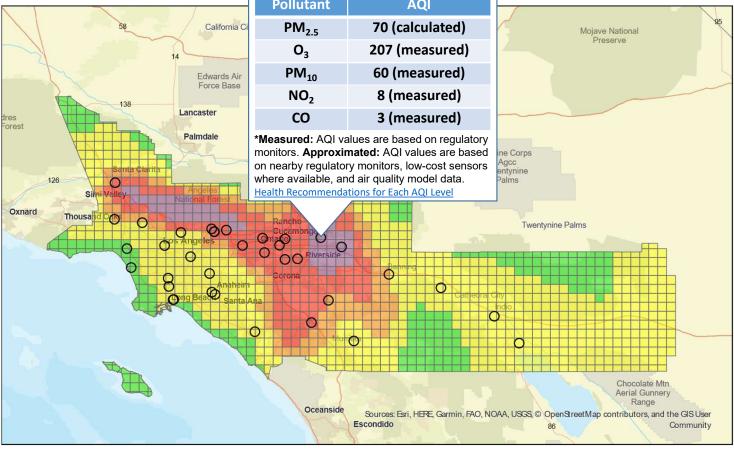


Real-Time AQI Map (www.aqmd.gov/aqimap)

Real-Time AQI Map (www.aqmd.gov/aqimap)

Real-Time AQI M

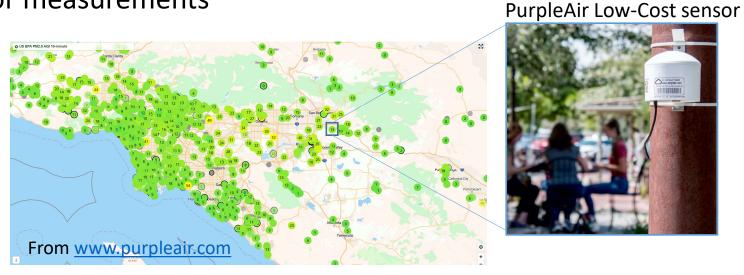
San Bernardino


AQI: 207

AQI Category: Very Unhealthy

Dominant Pollutant: Ozone | Updated: 4 PM

Pollutant	AQI
PM _{2.5}	70 (calculated)
O ₃	207 (measured)
PM ₁₀	60 (measured)
NO ₂	8 (measured)
СО	3 (measured)

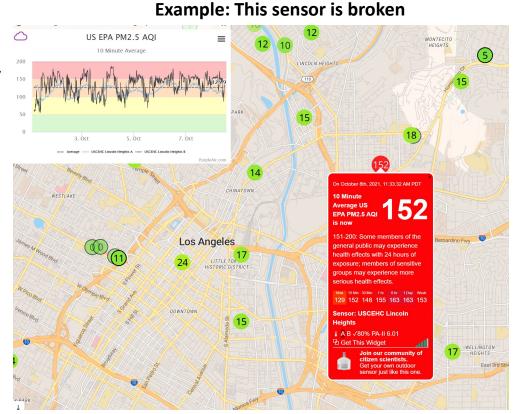


Consumer-Grade Sensors

• About 700 PurpleAir PM2.5 sensors in 2021; Great spatial coverage

• South Coast AQMD AQI Map uses sensor data to fill in gaps between

monitor measurements



Other types of sensors are also being deployed (aeroqual AQY) and will be integrated after testing The AQI map also uses model data

Interpreting Consumer-Grade Sensor Data

- Sensor data should be:
 - Representative (place sensor away from local pollution sources)
 - Calibrated/corrected (often based on colocation with regulatory monitors)
 - Reliable (remove broken sensors)
 - Averaged (1-hour averages for NowCast AQI)
- South Coast AQMD AQI map handles these issues

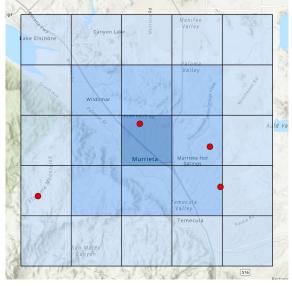
From www.purpleair.com

Treatment of Consumer-Grade Sensor PM2.5 Data

1) Quality Control PurpleAir data

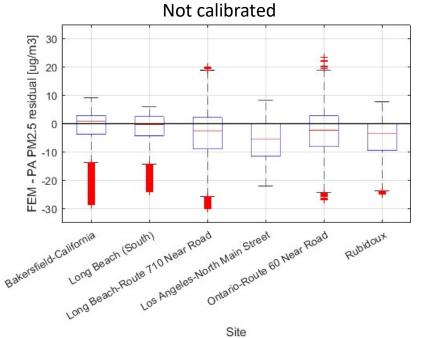
By comparing the simultaneous measurements from the two channels within each sensor and applying statistical criteria

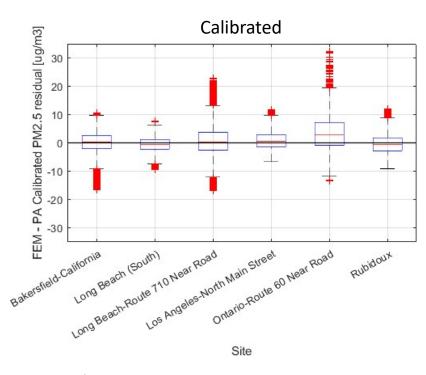
https://notunhealthy.com


2) Calibrate PurpleAir data

Using collocated reference monitor data and correction for relative humidity

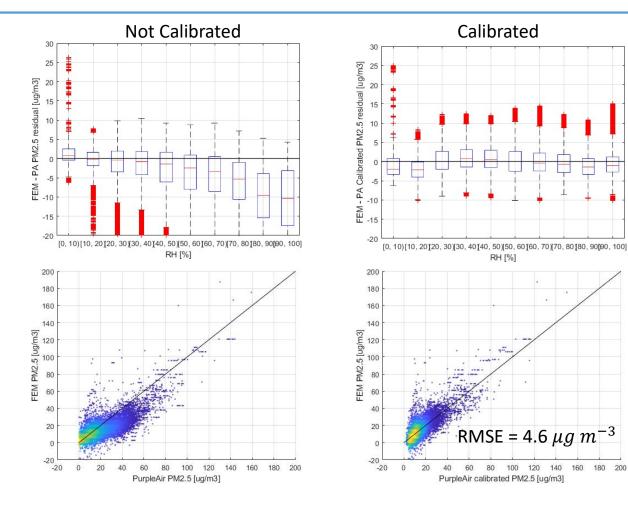
https://www.aqmd.gov/aq-spec/


3) Combine sensors to estimate average concentration in grid cell



To mitigate potential bias caused by hyperlocal sensors, we average sensors in similar geographical areas

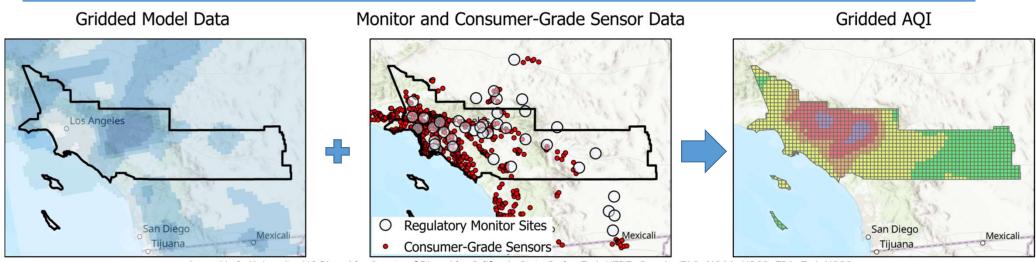
Sensor Calibration Performance



645,000 hourly data points (Purple Air with collocated FEM) are used to derive a calibration equation

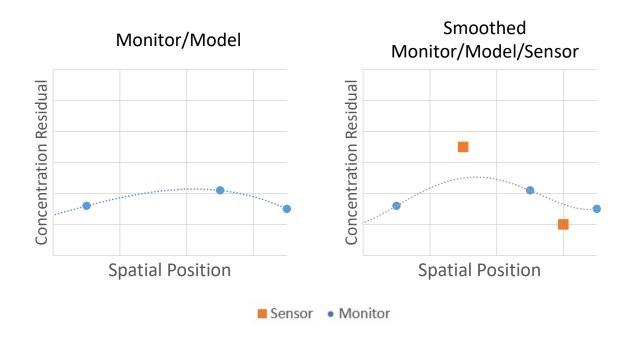

Sensor Calibration Performance

AQI Map Also Uses Model Data


- National Air Quality Forecast Capability
 - Community Multi-scale Air Quality model with Global Forecast System meteorology
 - National Emission Inventory 2016 (NEI)
 - Kalman Filter Analog bias correction
 - 6z/12z daily runs
 - PM2.5 and Ozone
 - Conducted for entire U.S.

From https://digital.mdl.nws.noaa.gov/airquality

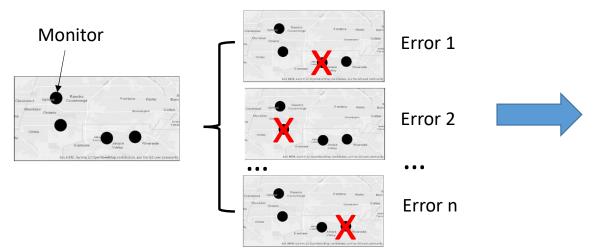
How the AQI Map Works



Loma Linda University, UC Riverside, County of Riverside, California State Parks, Esri, HERE, Garmin, FAO, NOAA, USGS, EPA, Esri, USGS

Pollutant	Method	Far from monitors	Near monitors
PM _{2.5}	Fill in gaps between monitors using model	Models and consumer-grade sensor	
P1V1 _{2.5}	and consumer-grade sensor data	data drive concentration	Monitor data drives
O ₃	Fill in gaps between monitors using model	Models drive concentration	concentration
PM ₁₀ , NO ₂ , CO	Natural neighbor interpolation	Monitor data drives concentration	

How the AQI Map Blends Monitor/Model/Sensor Data



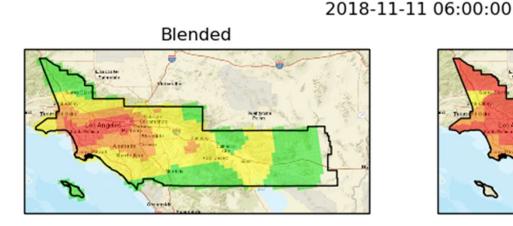
Concentration "surface" is fixed to regulatory monitors. Between monitors, model and consumer-grade sensor data modifies the concentration surface based on their relative uncertainties.

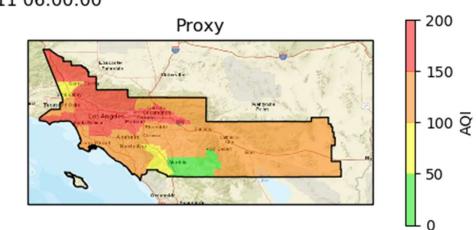
Evaluating Performance Compared to Other Methods

Leave one out cross validation holds out one monitor at a time to estimate error

Root Mean Square Error (all pollutants)

Pollutant	Proxy	Inverse Distance Weighting	South Coast AQMD AQI Map
$PM_{2.5} [\mu g m^{-3}]$	7.6	7.73	5.94
O ₃ [ppb]	10.2	8.75	7.12
PM_{10} [µg m ⁻³]	34.7	36.1	33.6
CO [ppm] NO ₂ [ppb]	0.171 7.57	0.191 6.94	0.163 6.22


IDW – Inverse distance weighting as used by AirNow maps



- South Coast AQMD AQI map has lower errors than Proxy and IDW for all pollutants used in AQI calculation
- Additional assessment conducted for PM2.5 data with independent data sets

Additional Advantages of Blended Map During Wildfires

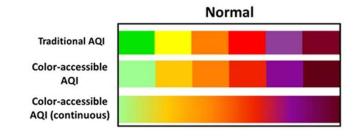
- Integration of PurpleAir and NOAA model data helps capture localized smoke plumes that are between regulatory monitors
- Higher resolution blended map better represents wildfire plumes
- Blended map automatically integrates temporary e-BAM monitoring data

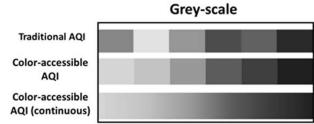
Map Performance Excels During Wildfires

 ${
m PM}_{
m 2.5}$ RMSE [$\mu g~m^{-3}$] on fire days

Method	Proxy	Inverse Distance Weighting	South Coast AQMD AQI Map
Leave One Out Cross Validation	7.04	6.62	6.01
Gravimetric validation dataset	5.68	4.39	3.35
North Hollywood validation dataset	19.2	16.8	9.15

Proxy and Inverse Distance Weighting are other methods that have been used to make AQI maps


More Accessible AQI Colors

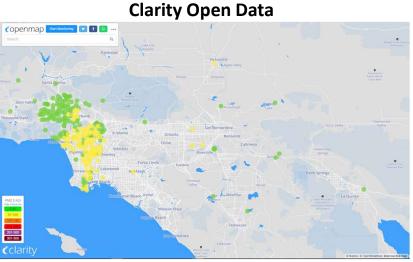

Palmdale Victorville Santa Clarita Angeles National Forest Los Angeles Riverside Long Beach Murrieta

Santa Clarita Angeles National Forest Los Angeles Riverside Long Beach

More Accessible AQI

Esri, CGIAR, USGS, City of West Covina, County of Los Angeles, California State Parks, Esri, HERE, Garmin, FAO, NOAA, USGS, Bureau of Land Management, EPA, NPS

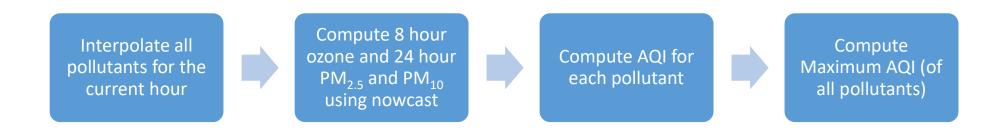
Murrieta


- Available as option in current AQI map and on EPA Fire and Smoke Map
- Modified colors improve accessibility for people with eight types of colorblindness
- Color lightness changes uniformly with AQI
- Can be used for continuous color scale

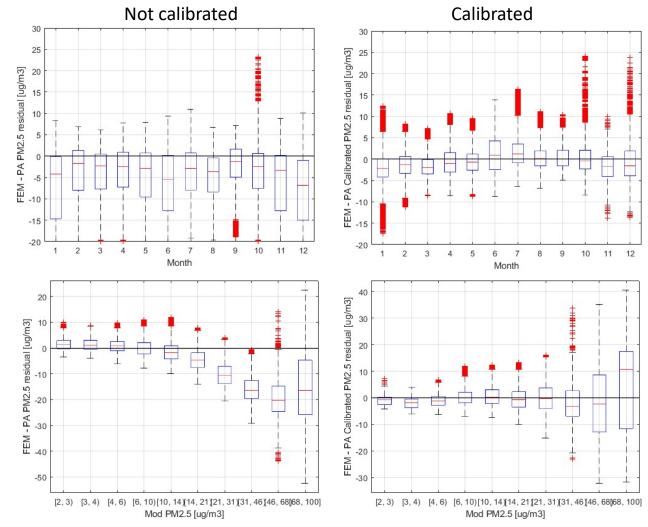
Ongoing Improvements to AQI Map

- Adding data from more types of Consumer-Grade sensors
 - Aeroqual AQY 1: PM2.5, NO2, Ozone
 - Clarity Node-S: PM2.5, NO2, Ozone (optional)
- Improving code (increase responsiveness and reduce data outages)

Conclusions



- AQI map has high level of accuracy and avoids common public misunderstandings of real-time sensor readings
- Air Quality sensors are an important tool to supplement regulatory measurements in the AQI map
- Currently looking for additional locations to site PurpleAir and Aeroqual AQY sensors to fill data gaps in the map
- Data displayed on South Coast AQMD homepage and mobile app (www.aqmd.gov/mobileapp)
 - App can push notifications during periods of poor air quality


Backup Slides

Process to Generate AQI Values

PurpleAir Calibration

Sensor Blending Method

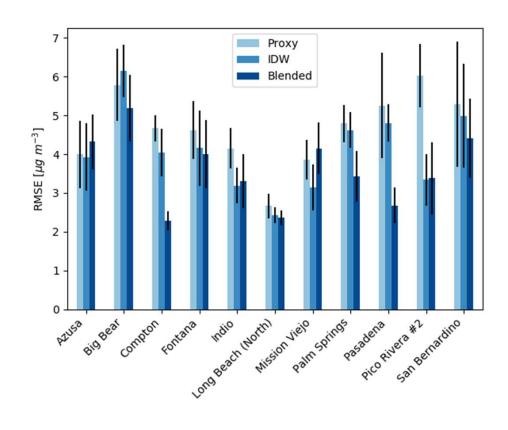
- Quality control, calibrate, and smooth (average in grid cell) the PurpleAir data
- Residual Kriging interpolation with modifications
 - PurpleAir data is included as observations in addition to monitor data
 - Data is assigned a measurement uncertainty that is used to give more weight to the more accurate monitor data
- Measurement Uncertainty
 - PurpleAir uncertainty is the sum of two components: the RMSE of the collocation curve fit¹ and the standard error of the average in the grid cell²
 - Monitor data has zero uncertainty

¹ As 1 standard deviation

² Standard error is estimated based on the average concentration when the number of sensors is small

Additional Evaluation of PM2.5 Performance with Monitoring Data from Independent Data Sets

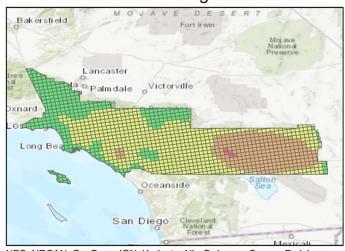
- 24-hour Average Gravimetric Data (June 30, 2018 – March 31, 2020)
 - ➤ Performed analysis at 11 sites that do not have collocated continuous PM2.5 monitors
- North Hollywood Hourly PM2.5 (Oct 11, 2019 – March 31, 2020)
- Mission Viejo Hourly PM2.5 (Oct 29, 2019 – March 31, 2020)


$PM_{2.5}$ Root Mean Square Error [$\mu g m^{-3}$]

Method	Proxy	IDW	Blended
Gravimetric	4.64	4.07	3.59
North Hollywood	8.91	9.07	7.51
Mission Viejo	8.83	7.31	8.87

Using Gravimetric Monitor Data to Evaluate Performance

- 24-hour PM2.5 average of blended map predictions are compared to gravimetric measurements at stations without collocated continuous instruments
- Performance is somewhat station dependent
- Blended map has lower average RMSE than Proxy and IDW



Including PM₁₀ Measurements from Surrounding Areas Produces More Realistic AQI

With Surrounding Area PM10

Bakersfield MOVAVE DESERT Fort Irwin Mo ave National Preserve Lancaster Dxnard Long Beau Oceanside Salton Sea San Diego Cleveland National Forest

Without Surrounding Area PM10

Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the GIS User Community

JETSI – Schneider Was Successful but Still Faced Challenges

- Part of the Joint Electric Truck Scaling Initiative (JETSI):
 - Up to 92 Class 8 Battery Electric Trucks
 - 16 dual-corded 350 kW chargers

"Schneider Battery-Electric Truck Ribbon Cutting Event" https://www.jetsiproject.com/

JETSI – Schneider Project Timeline

• 2021:

- April/June: Project awarded and approved
- October: SCE Charge Ready Transport agreement executed

• 2022:

- June: EVSE equipment ordered
- August: construction permit submittal

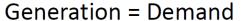
• 2023:

- January: 1st BET delivered
- February: Construction commenced
- May: Site energized
- August: Commissioning complete
- Challenges: Limited grid capacity, charging equipment UL certification, construction permitting, cost increases

Photo shared with permission from DTNA

https://www.bv.com/projects/electrifying-commercial-freight-delivery-for-schneider-national

Installed chargers at Fleet A waiting to be energized, shared with permission from fleet

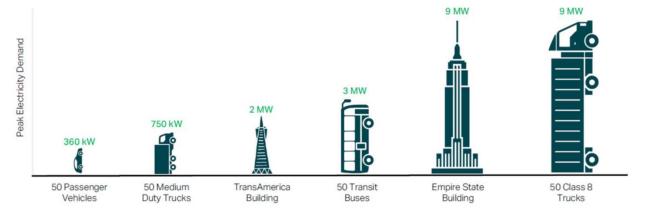

Skid mounted temporary 50kW chargers at Fleet C, shared with permission from DTNA

Other BET Deployment Infrastructure Challenges

- Fleet A: 50 BETs, 19 350 kW chargers, 1 MW solar and 4 MWh battery storage
 - Also part of JETSI project
 - Change of site electrical service classification doubles EVSE equipment and installation costs
 - DER non-offsetting demand
 - Resolutions: utility provided temporary power to energize 10 chargers by Nov 2023, remaining chargers will be installed but not energized until summer of 2024
- Fleet B: 8 BETs, 7 240 kW chargers
 - Limited grid capacity, UL certification, and fleet plan changes
 - Resolutions: utility provided temporary power and energized a 240 kW charger to support 5 BETs
- Fleet C: 15 BETs, 15 180 kW chargers
 - Delay in local construction permitting, since 2/2023
 - Resolutions: 5 temporary chargers (~50kw) to support 15 BETs

4

Upgrading the Grid for Transportation will Take Time



California Is Electrifying: Learn About the CA Grid and the Scope of the Effort Required. A.
Katzenstein, Presentation to 2023 OSAR conference, March 2023

- Generation must be met by demand
- Full fleet electrification will need new generation
- Chargers needed by 2030: 114,500 for MDV/HDV and 1.01M for LDV*

Innovative Infrastructure Solutions Needed

- Challenges ahead in meeting regulatory requirements
- Take away: permanent infrastructure takes time
 - Distribution grid not built to support transportation
 - Permitting/UL requirements can also delay
- ZE truck deliveries likely occur before permanent infrastructure is ready
- Innovative charging solutions needed:
 - Portable chargers and grid support using batteries and/or clean onsite generation

"We all want to avoid temporary charging"

B. Stevens, Daimler Trucks North America, "BEV Beachhead", presentation at the Clean Fuels Program Advisory Group Retreat, Feb 2023

OVERVIEW PRESENTATION

Confidential/Proprietary – Not to be distributed without authorization from Hyliion Inc. © 2023 Hyliion Inc. All Rights Reserved.

COMPANY OVERVIEW

250+EMPLOYEES

AUSTIN, TX 150k sq. ft. HQ

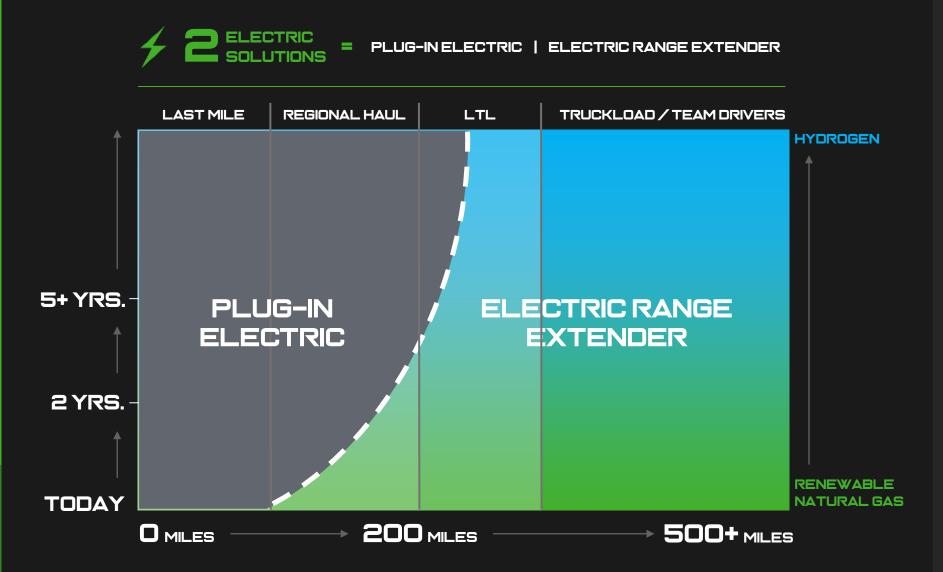
HYLN NYSE

\$354M

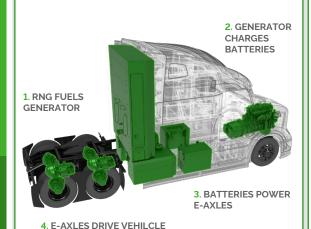
AVAILABLE CAPITAL as of Q2 2023

Reduce Carbon Emissions

Reduce Cost of Operation


Leverage Existing Infrastructure

POWERTRAIN EVOLUTION



POWERTRAIN PRODUCT PORTFOLIO

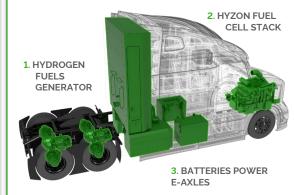
Product currently inproduction

> Fully Electric Powertrain Solution

AND CAPTURE ENERGY DURING BRAKING

Through partnership with KARNO

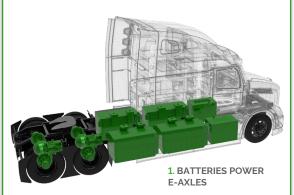
Fuel-Agnostic Linear Generator


AND CAPTURE ENERGY

DURING BRAKING

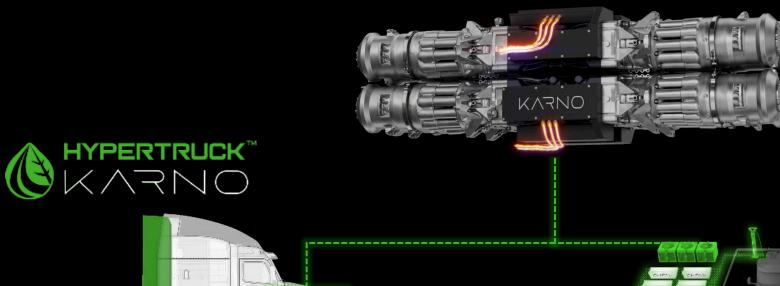
Development capabilities

Groundbreaking Powertrain Solution With Hydrogen Fuel Cell Technology



4. E-AXLES DRIVE VEHILCLE AND CAPTURE ENERGY DURING BRAKING

Development capabilities


Platform can easily be transitioned into a BEV vehicle

2. E-AXLES DRIVE VEHILCLE AND CAPTURE ENERGY DURING BRAKING

KARNO GENERATOR¹

STATIONARY POWER

On-Highway | Off-Highway | Vocational Drayage | Medium-Duty

EV-Chargers | Data Centers | Industrial | Commercial Properties | Neighborhoods

SCALABLE POWER

Stack systems to scale from 150 kW to 5 MW+ power output

FUEL AGNOSTIC

Over 20 compatible fuel types

INCREASED EFFICIENCY

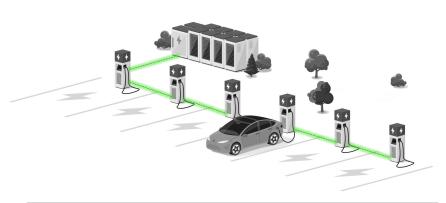
Expected 20%+ increase in efficiency over todays leading generators

REDUCED EMISSIONS

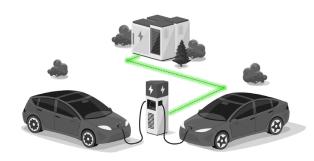
Hydrogen capable and ultra-low emissions on conventional fuels

KARNO POWER DENSE AND MODULAR

KARNO STATIONARY UNIT



200 KW per module


~1MW of KARNO Powergen in a standard 10ft container¹, 2MW in a 20ft container²

5-10X smaller footprint vs. other generators

SITE SETUP

Power Block

Power-Matched

Confidential/Proprietary – Not to be distributed without authorization from Hyliion Inc.
© 2023 Hyliion Inc. All Rights Reserved.

KARNO BENEFITS TO STATIONARY POWER

LOW EMISSIONS FLEXIBILITY

ADVANTAGED ECONOMICS

EASY TO IMPLEMENT

Fuel agnostic

Low emissions

High efficiency

Low levelized cost of electricity (LCOE)

Power dense + Modular

Low maintenance + Quiet

COOLING

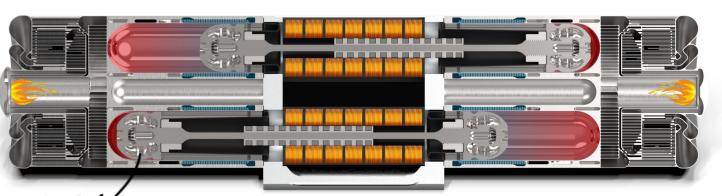
GENERATOR

COOLING

HEATER

Useful Heat, 40%

Electricity, 50%


Friction

Losses, 10% • Pumps & Accessories Generation Losses

- Exhaust Heat

Unrecoverable

- Non-Ideal Cycle
- Combustion Losses

ADDITIVE MANUFACTURING

Enables USA based cost competitive manufacturing

Printing capacity can scale as volumes scale

Proven technology; GE produces machines for aviation, healthcare & automotive

Confidential/Proprietary - Not to be distributed without authorization from Hyliion Inc. © 2023 Hyliion Inc. All Rights Reserved.

FUEL AGNOSTIC AND REDUCED EMISSIONS

EMISSIONS STANDARDS

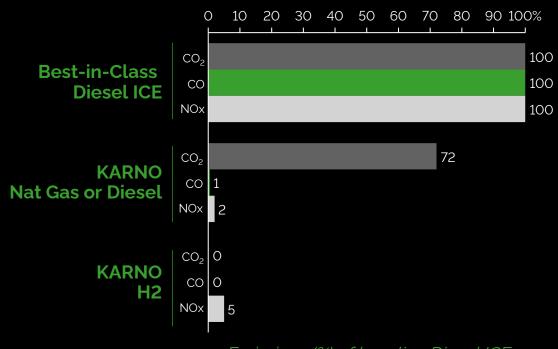
The KARNO[™] generator is expected to comply with all current and foreseeable emissions standards, specifically from CARB and EPA, even when utilizing conventional fuels.¹

HYDROGEN CAPABLE

JET FUEL (JP8)

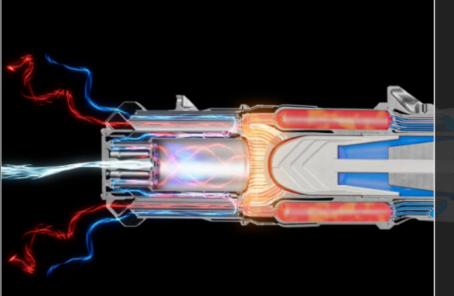
The KARNOTM generator is expected to operate on Hydrogen at efficiency levels that even surpass most of today's leading fuel cell solutions.¹

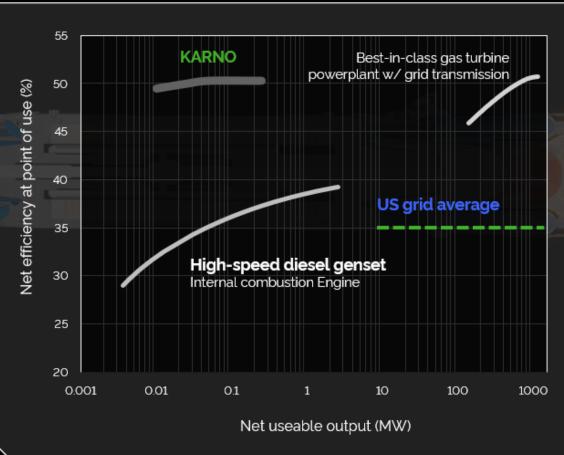
+OTHERS


KARNO DESIGN DRIVES A STEP-CHANGE IN UNTREATED EMISSIONS

KARNO builds on decades of multi-fuel, swirl stabilized combustion system

- Flameless oxidation
- Lean burn throughout the cycle
- Long resonance time


KARNO untreated emissions vs. diesel ICE



Emissions (%) of baseline Diesel ICE

KARNO power unit emits no unburned hydrocarbons (UHCs / PICs) due to ultralean pre-mixed oxidation

KARNO has •15-20% improvement over similar power output systems

KARNO performs at utility scale efficiency but in scalable, modular size

DESIGNED FOR LOW MAINTENANCE, QUIET OPERATION

10+ YEARS¹

\$0 ROUTINE COST¹

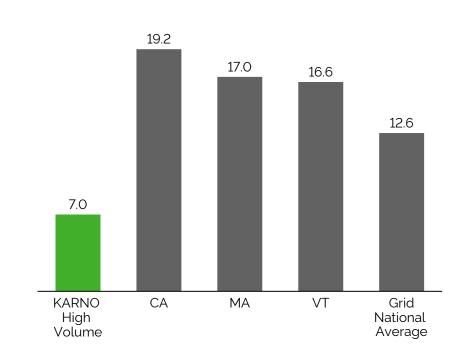
<65 dBA @ 6 FT¹

LONG LIFESPAN

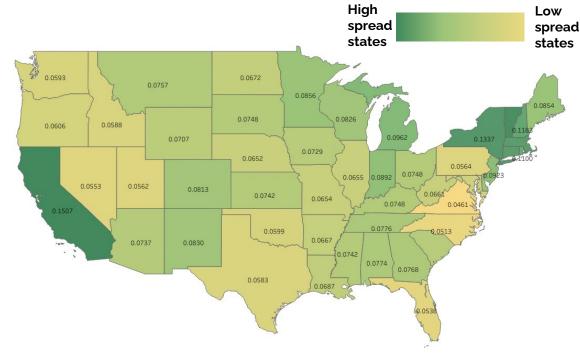
- LOW FRICTION
- SEALED SYSTEM

NO SCHEDULED MAINTENANCE

- NO OIL/LUBRICATION
- NO WEAR PARTS


LOW NOISE

- NO HP COMBUSTION
- LOW VIBRATION



LOWER COST OF ELECTRICITY VS. THE GRID

Levelized Cost of Electricity (LCOE) vs grid costs (cents/kWh)

Commercial electricity vs. commercial natural gas rates by state (\$/kWh)

Targeting states with high CNGelectricity spread can enable higher upside using KARNO

Source: EIA.gov, Commercial electricity (2021), commercial natural gas (2021), Contiguous US states only; Hyliion analysis

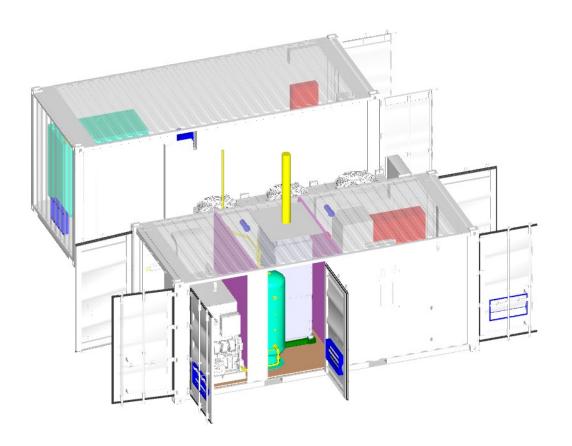
Kaizen Clean Energy

Renewable Power Anytime, Anywhere

September 2023

EXECUTIVE SUMMARY

Hydrogen Based Distributed Generation

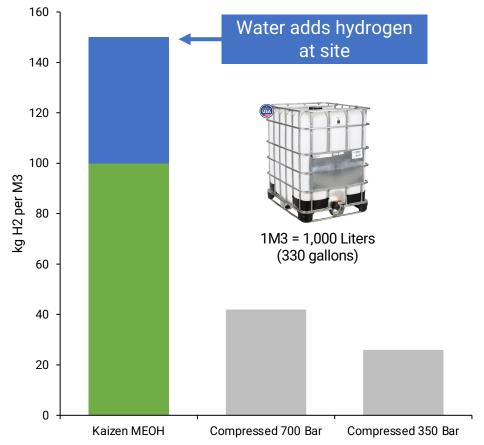

- EV charging
- Diesel generator replacement
- H2 fueling

Methanol as Hydrogen Carrier

• H2 produced on-site, on demand

Benefits

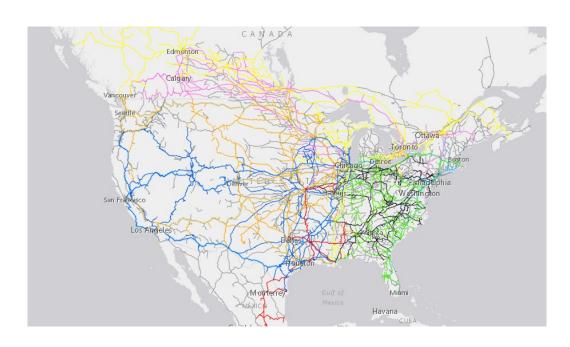
- Lower OPEX
- Flexible (moveable / scalable / energy security)
- No local emissions (No NOx, SOx or particulates)

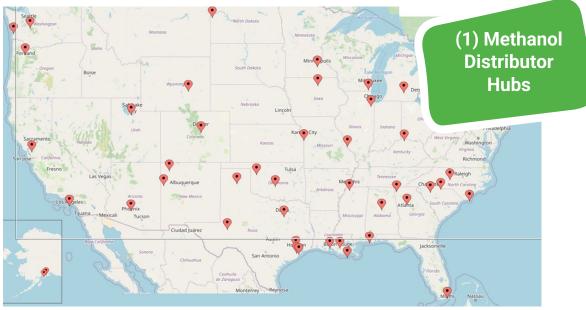


Movable & scalable systems to displace diesel.

METHANOL AS A HYDROGEN CARRIER

- Lowest cost H2 carrier
 - Densest carrier of H2
 - Liquid: cheap and easy to transport and store
- Safe
 - Flammability and combustibility like diesel
 - Water soluble
 - Liquid, not gas
- Readily available
 - Globally produced
 - Extensive distribution system
 - · Green methanol sources growing

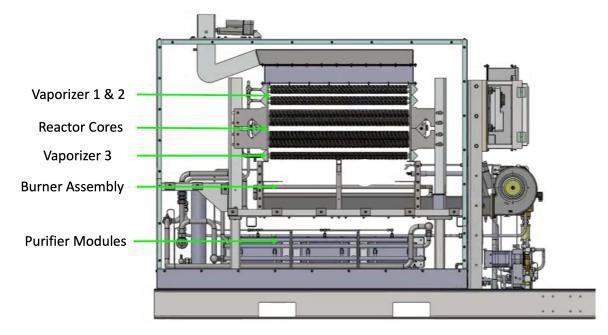

Methanol has more H2 by volume than other H2 carriers when using steam methanol reforming


Methanol is the lowest cost and safest carrier of H2.

Source: Methanol Institute & Argonne National Laboratory

DISTRIBUTION & METHANOL HUBS

Leverages Rail Network


Existing MEOH Hubs

Methanol leverages existing distribution networks on rail, road, and shipping.

KCE REFORMER

- 230kg/day capacity
 - On-site, on demand production
- High efficiency
 - Lower operating temperature (400C)
 - > 80% efficiency
- Small footprint
 - 3' x 4' x 6' dimensions
- Proven technology
 - ~250 H2 generators have been deployed
 - 20 + year operating history
 - Licensed from Element 1

Components of an 1,800 sLm H2 Generator

KCE150 EV CHARGING / MICROGRID

- Scalable: 150kW EV charging / microgrid scalable to MWs for primary power
- **Environmentally friendly**: No NOx, SOx or particulates. Carbon emissions of 0-45 gCO2e/MJ.
- No permanent infrastructure: The units are containerized and transportable.
- Unmatched energy density: a 20' container provides 3.6MWh of energy per day. A 20' fuel tank contains 48MWh of energy on-site.

Performance

Base Power Output 150kW Peak Power Output 750kW

Output Voltage AC 480v, 3-phase

Demand Response Immediate
Operating Conditions -40F to 120F

KCE150

Emissions

CO2 0-95 gCO2e/MJ

Nitrogen Oxides (NOx) 0 ppm Sulfur Oxides (SOx) 0 ppm Particulates (PM) 0 ppm Noise 70dB (6')

KCE 150 - 150kW base load with 750kW peaking.

Element 1

- 150kW EV Charging unit
- Demonstration in Bend OR in October

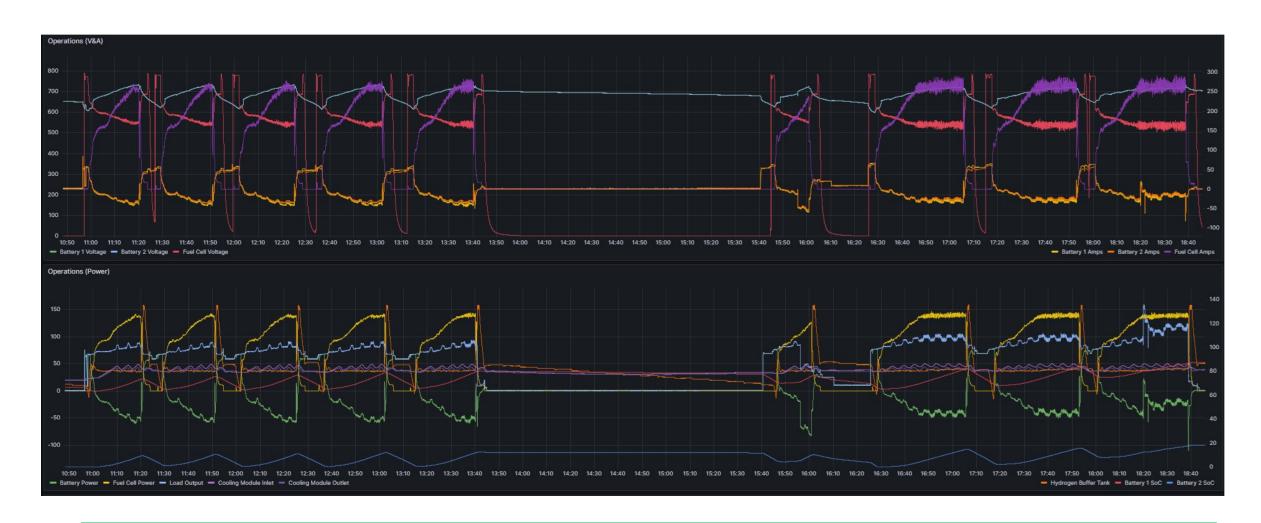
Extreme E

- 150kW DC to DC Microgrid unit
- Next race Sep 8/9 in Sardinia on Fox Sports

Products in service producing AC and DC power.

EXTREME E – A SHOWCASE FOR KAIZEN'S SOLUTION

Off-grid, transportable, zero emissions



Sample multi-hour run of fuel cell & reformer.

POWER PRODUCTION CURVES

60kW long run test on left & 50-75kW tests on right.

Application Drivers Current Target Market **Advanced Clean Fleets** EV charging **Fleets Grid constraints** Off-road vehicles Diesel generator NOx emissions **Events** replacement Off-grid Movie studios Municipal transit Innovative Clean Transit H2 fueling agencies

TAKEAWAYS

Lowest cost H2

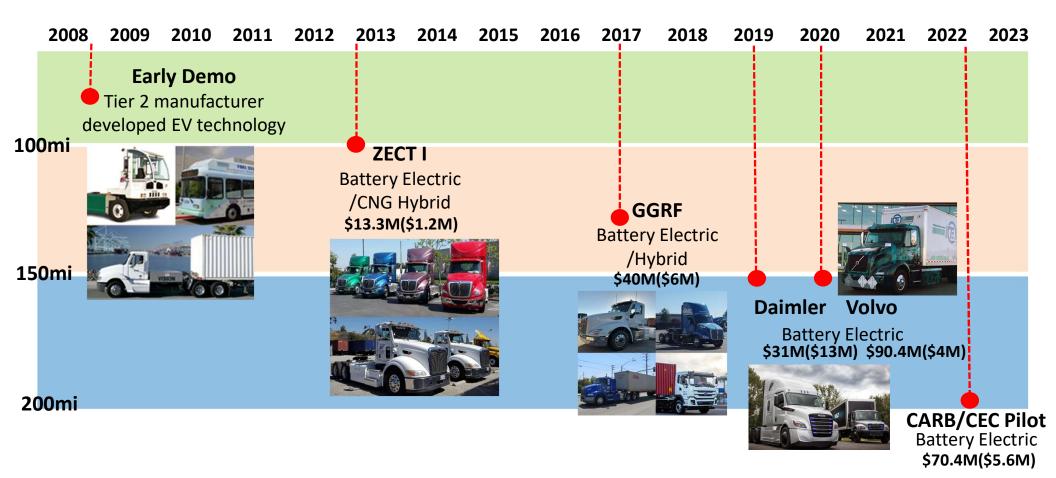
No local emissions

Scalable

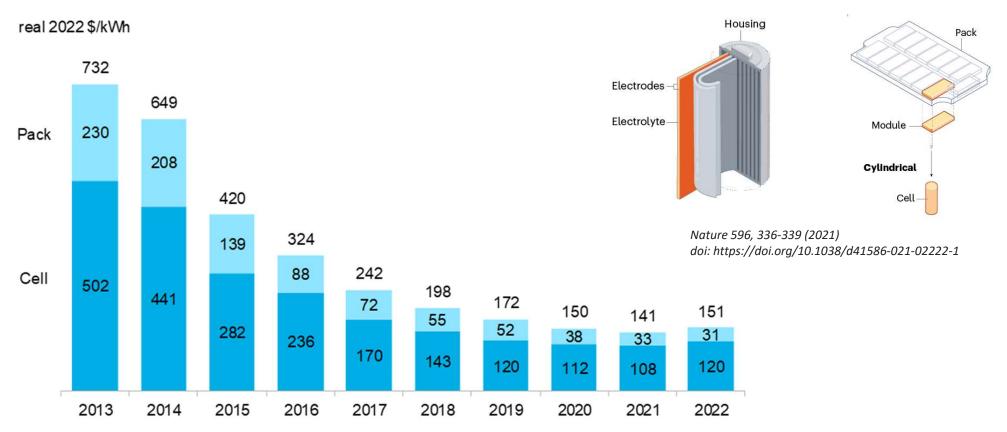
Transportable

Unmatched energy security

Small footprint and spacing requirements


Questions / System Overview

Vehicle Electrification Technologies in the Heavy-Duty Sector


Seungbum Ha
Cleans Fuels Advisory Group Retreat
September 14, 2023

Heavy-Duty Battery Electric Truck Project

^{* \$} Total Project Cost(SCAQMD Cost-share)

Lithium-ion Battery – 10-year pricing history

Bloomberg New Energy Finance above

https://about.bnef.com/blog/lithium-ion-battery-pack-prices-rise-for-first-time-to-an-average-of-151-kwh/

Lithium-ion Battery – Chemistry

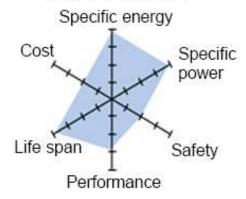
Lithium-Nickel-Manganese-Cobalt (NMC)

Specific energy

Cost
Specific power

Life span
Safety

Performance


Specific energy

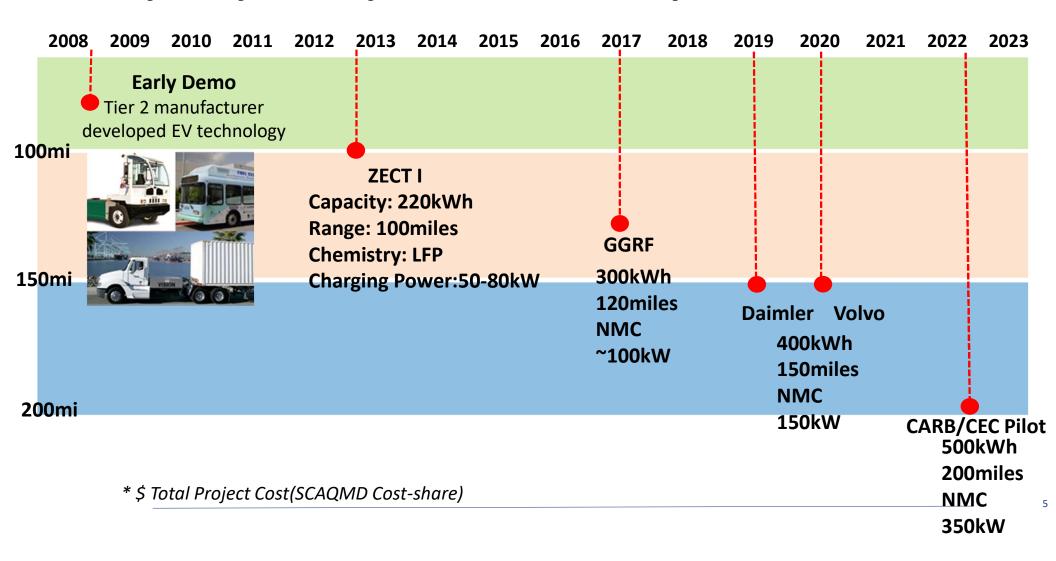
Cost

Specific power

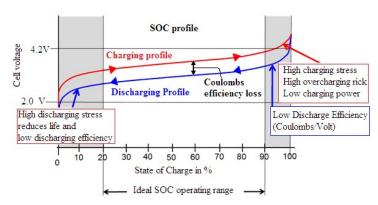
Safety

Lithium-Nickel-Cobalt-Aluminium (NCA)

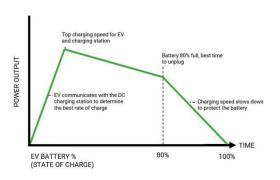
- High specific energy
- Good for EV application
- Relatively shorter life cycle


- Long life cycle
- Good thermal stability
- Enhanced safety

Performance

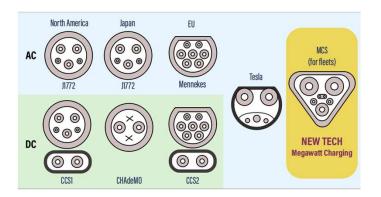

- Low energy density
- Poor performance at low temperatures

- High specific energy
- Good specific power
- Long life span
- Expensive
- Thermal instability

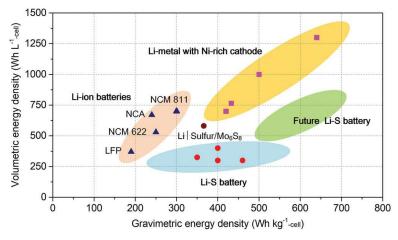

Heavy-Duty Battery Electric Truck Project

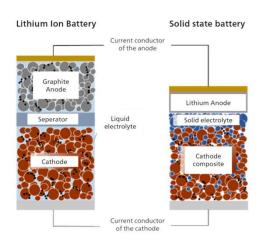
Charging Duration – Still a Challenge...

Bharatiraja, C. & Padmanaban, Sanjeevikumar & Siano, Pierluigi & Ramesh, K. & Selvaraj, Raghu. (2017), Energies. 10. 10.3390/en10030377.

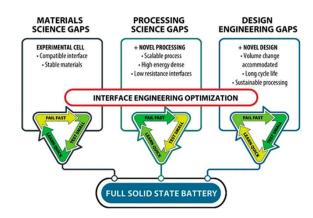

https://www.power-sonic.com/blog/the-ultimate-guide-to-dc-fast-charging/

Megawatt Charging System(MCS)

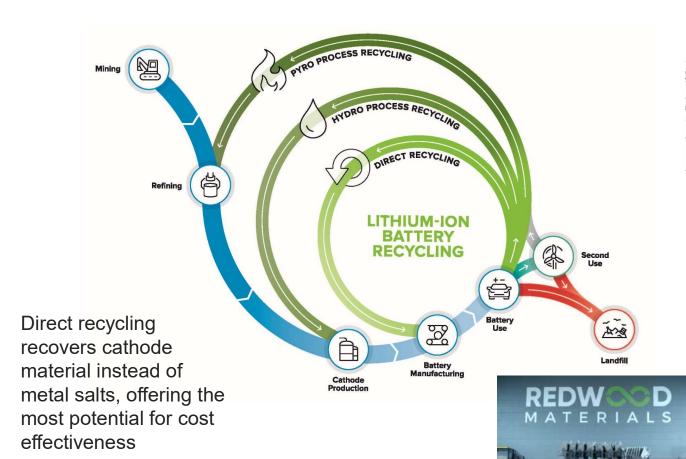


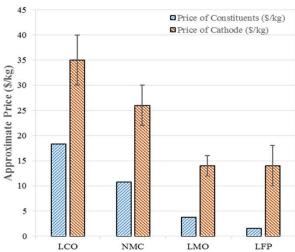

Charging rate	Charging hours*	Miles/min charging
150kW	2 hours	1miles/min
350kW	50mins	2.3miles/min
1MW	18mins	6.7miles/min

^{*}Charging 20-80% of SoC



Energy Density and Safety – Still a challenge...


- Higher energy density
- Faster charging
- Improved safety
- Improved performance in extreme temperatures



https://www.raylase.de/en/applications/Battery-Production-electric-mobility/solid-state-batteries-1.html

https://pubs.acs.org/doi/10.1021/acsenergylett.1c00445

Lithium-ion Battery – Recycling

https://www.anl.gov/topic/recell

Team

Our team has an action-biased culture marked by integrity, humility, competence, and passion for the mission and the systems we design.

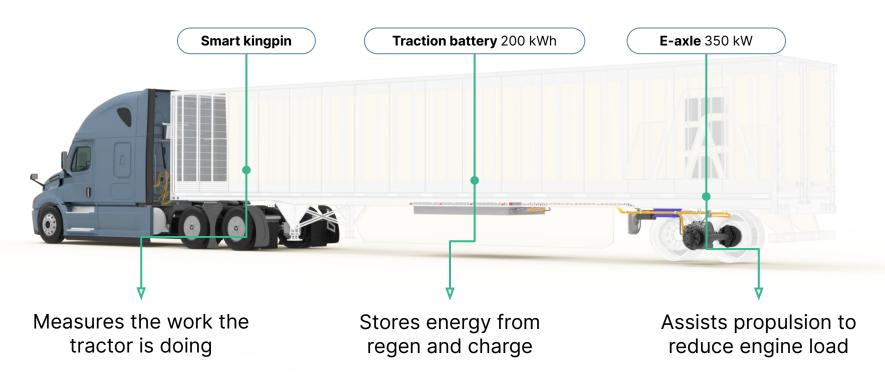
We are building real products here, and are looking for doers to join us.

We are creators, makers, and doers.

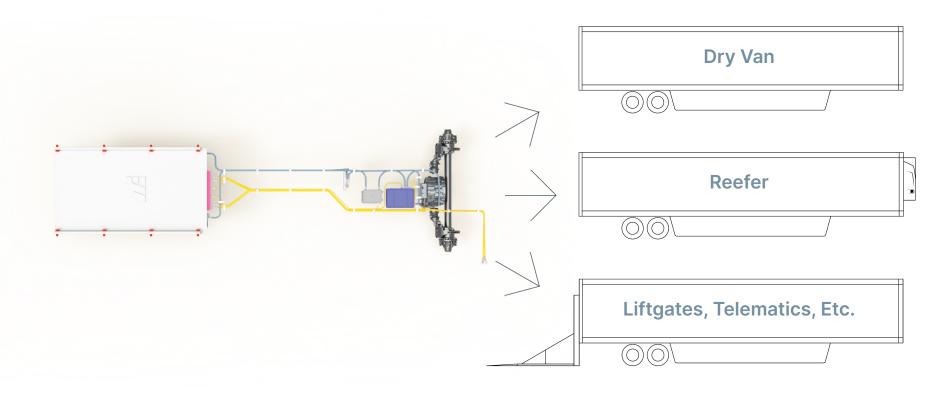
Ali Javidan Founder/CEO

Helping meet your environmental goals

Range RA-01 Trailer


Lower diesel emissions by 30-40%

No changes needed to your fleet


Unlimited range in mild-hybrid mode

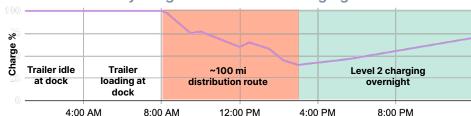
20,000+ miles on the road.

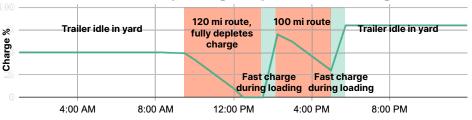
How our system works

One Platform, Many Applications

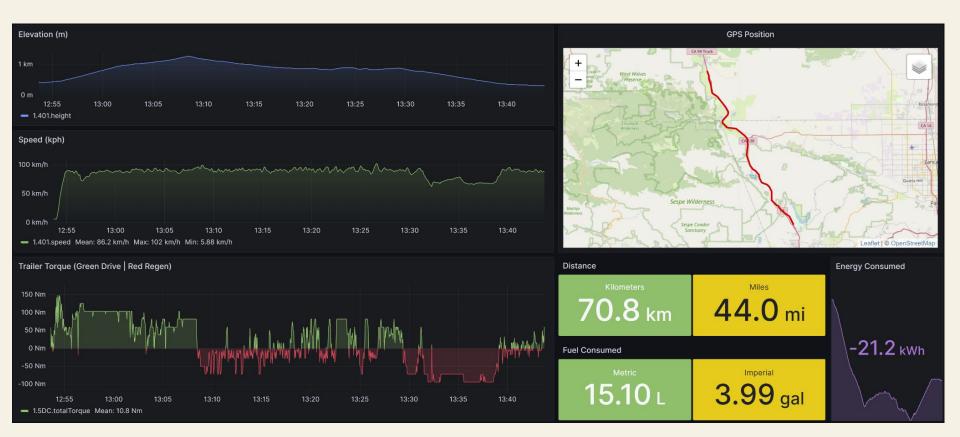
Charging That Fits Existing Utilization Patterns

DOCK CHARGING: LOADING TRAILERS WITH ELECTRONS AND CARGO SIMULTANEOUSLY


Standard chargers take valuable space

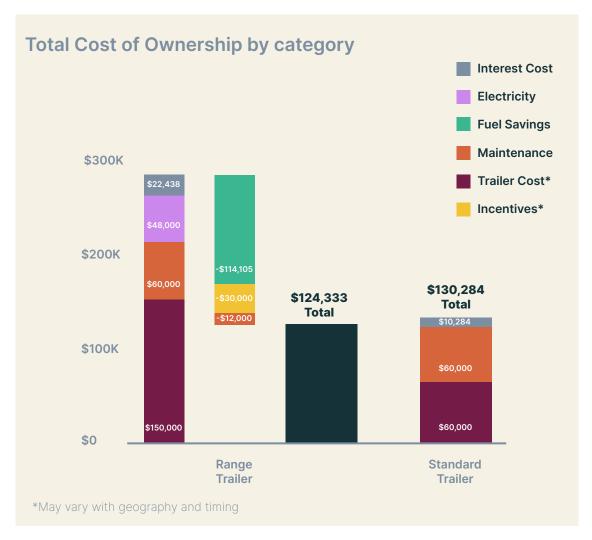

Aerial view of landlocked 55 acre customer site

Dock-based charging is space and time-efficient


DSD route: Day-long route + Level 2 charging

Plant/DC route: Multiple longer trips + DC fast charge

Cruising up the Grapevine getting 11.03 mpg!


Customer Benefits

Lower fuel consumption

Lower maintenance costs

Lower CO2, NOx, and particulate emissions

Access to incentive programs (Range already eligible for a \$80k voucher as part of California CORE)

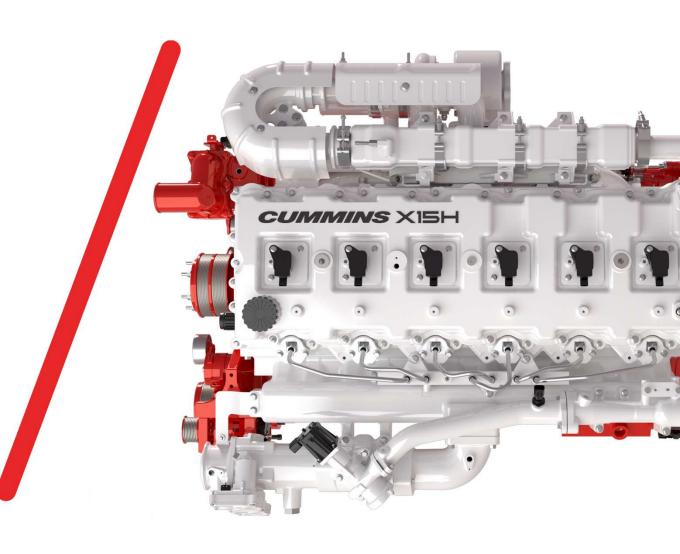
Customer Interest

Interested Fleets in pipeline include:

5 of the top 25 private fleets

5 of the top 50 for-hire fleets

8 of the top 100 logistics companies


Hydrogen Internal Combustion Engines (ICE)

A PRACTICAL SOLUTION FOR DECARBONIZATION

Jim Nebergall

General Manager - Hydrogen Engines Cummins Inc.

Accelerating toward

Destination Zero

Cummins will continue to innovate and invest as we advance along the path to zero, but we can't do it alone.

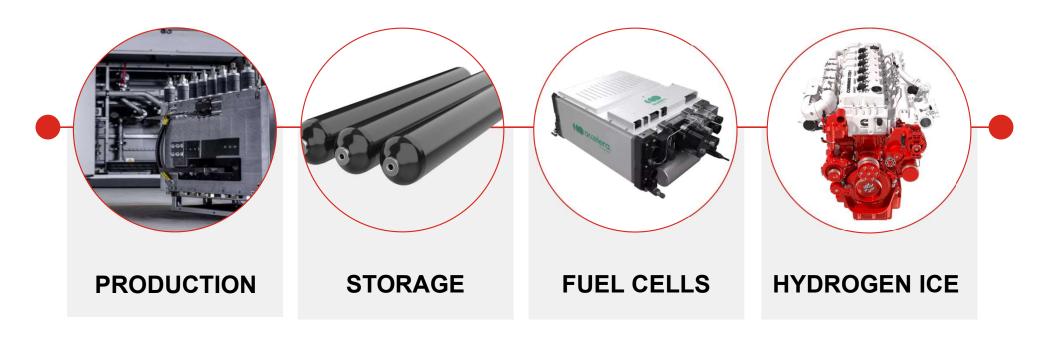
- Action is required today.
- Progress requires partnership.
- Technology leadership is critical.

ENERGY SOURCES

GREEN HYDROGEN ECONOMY

POWER SOLUTIONS

ADVANCED ENGINES

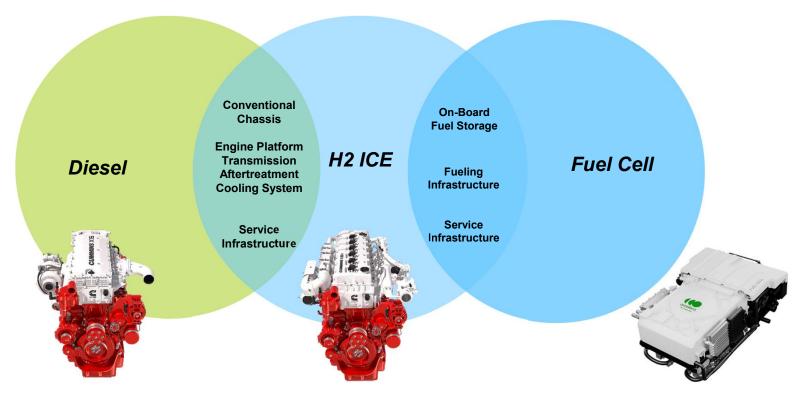

diesel | natural gas | hydrogen

BATTERY ELECTRIC

FUEL CELL ELECTRIC

OUR COMMITMENT TO HYDROGEN

CUMMINS IS INVESTING IN THE FULL HYDROGEN ECO-SYSTEM


HYDROGEN IN COMMERCIAL VEHICLES

CUMMINS IS PROGRESSING TWO COMPLEMENTARY HYDROGEN POWER TECHNOLOGIES

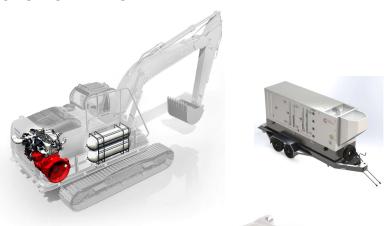
H2 ICE has Fast Maturity due to Technology Commonality

...and accelerates Fuel Cells

HYDROGEN ICE IS WITHIN REACH

THE EVOLUTION OF AN EXISTING CONCEPT IS CREATING A REVOLUTION IN SUSTAINABILITY

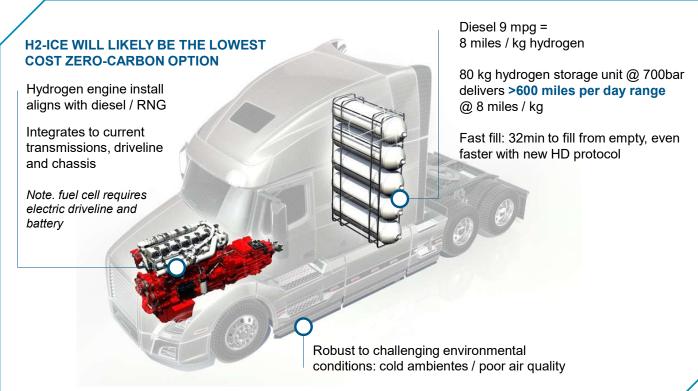
Supports decarbonization of the commercial vehicle industry

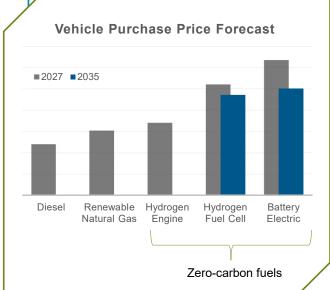

- Zero-carbon well-to-wheel with green hydrogen
- Scale production can begin within the decade

Benefits to end users

- Competitive initial cost
- Familiar powertrain technology, vehicle technology and maintenance practices
- Single fuel supply switch across a range of duty cycles

Complementary to hydrogen fuel cell


- Builds scale for hydrogen storage tanks on vehicle
- Drives hydrogen fueling infrastructure
- Common hydrogen service and support infrastructure



HYDROGEN ICE

2027 / NORTH AMERICA / LINE HAUL / 120,000 MILES PER YEAR / 500+ MILE RANGE

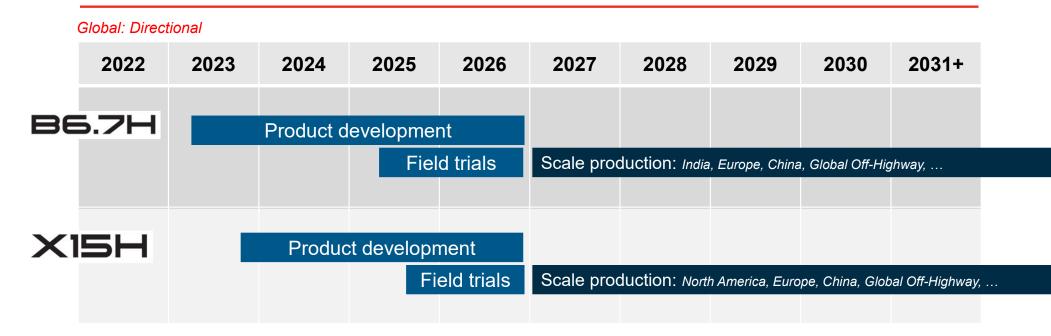
HYDROGEN ICE IS WITHIN REACH

THE EVOLUTION OF AN EXISTING CONCEPT IS CREATING A REVOLUTION IN SUSTAINABILITY

Supports decarbonization of the commercial vehicle industry

- Zero-carbon well-to-wheel with green hydrogen
- Scale production can begin within the decade

Benefits to end users


- Competitive initial cost
- Drop-in regional haul / long haul replacement
- Familiar powertrain technology, vehicle technology and maintenance practices
- Single fuel supply switch across a range of duty cycles

Complementary to hydrogen fuel cell

- Builds scale for hydrogen storage tanks on vehicle
- Drives hydrogen fueling infrastructure
- Common hydrogen service and support infrastructure

HYDROGEN ICE TECHNOLOGY READINESS

Field trials: limited quantiles available, pre-series Scale production: production pricing, warranty, durability

INITIAL TARGET HYDROGEN ICE APPLICATIONS

PERFORMS EFFICIENTLY IN DIVERSE APPLICATIONS AND DUTY CYCLES ACROSS MANY MARKETS

Regional Haul

Line Haul

Vocational

Construction

Agriculture

Terminal Tractor

Power Generation

...AND MORE

THANK YOU!

CONTACT:

Jim Nebergall General Manager - Hydrogen Engines jim.r.nebergall@cummins.com

ONLINE:

www.cummins.com/engines/hydrogen-engines

DEUTZ Solution Park **H2** for Off-Highway Applications

CLEAN FUELS PROGRAM ADVISORY GROUP September 14th, 2023

Christoph Scholtes CTO | DEUTZ Americas

DEUTZ Provides Drive Systems for Different Application Segments

Construction Machinery

Material Handling

Agricultural Machinery

Stationary Systems

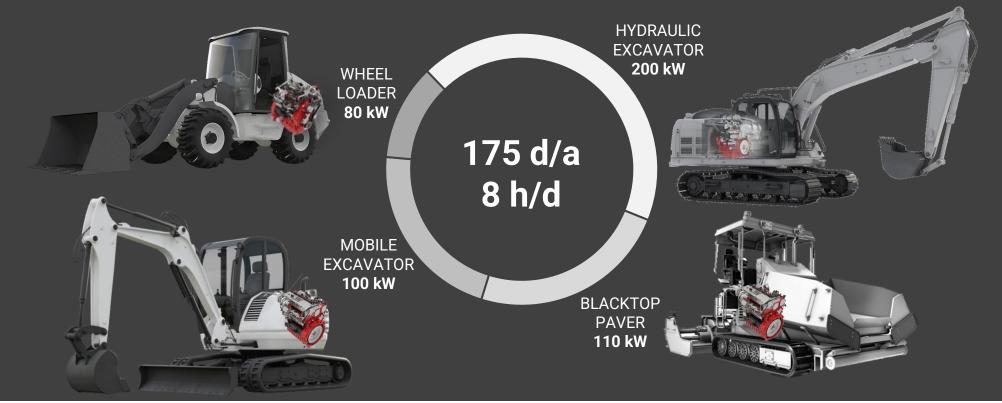
Other

Future Challenges

Emissions Reduction

Noise Cancellation

Optimization of Drive Solutions

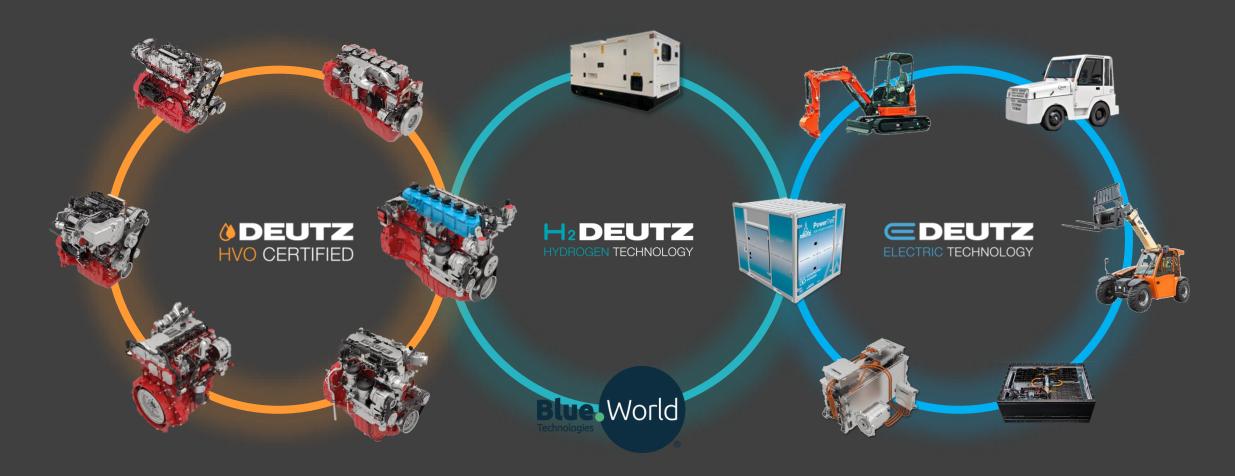

Well-to-Wheel Analysis & Life Cycle Assessment

CO₂ Neutrality

DEUTZ Engines Power Construction Sites That Are Responsible for Considerable Amounts of CO₂

140 TONS

OF CO₂ ARE EMITTED BY THIS EXAMPLARY CONSTRUCTION SITE - PER YEAR

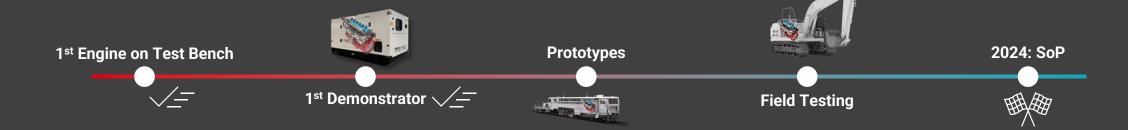

WE ARE COMMITTED TO MAKING OUR PRODUCT ECOSYSTEM

CLIMATE-NEUTRAL

BY 2050


DEUTZ Solution Park - No "One Solution Fits All" Approach

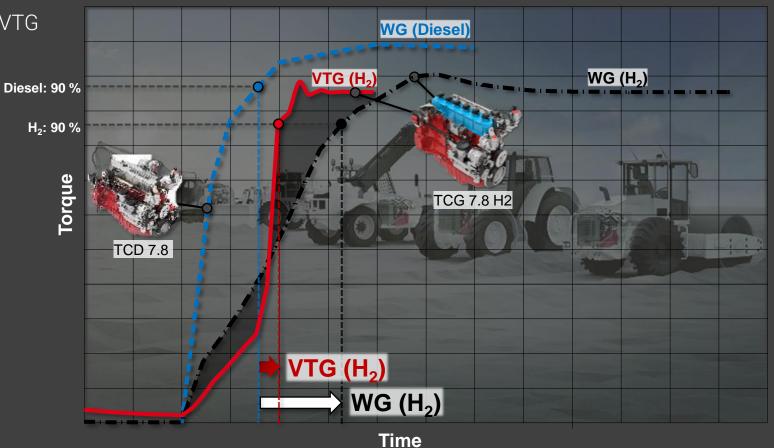
H₂ ICE: DEUTZ TCG 7.8 Hydrogen Engine - Specification



SPECIFICATION		
Cylinder	6 in-line	
Displacement	7,8 liter	
Bore / stroke	110 / 136mm	
Max. power	220 kW @ 2200rpm	
Max. torque	1000 Nm @ 1000 – 1600rpm	
Certification	EU Stage V, EU Zero Emission ¹	
Exh. Aftertreatment	SCR only ²	

1. <1 g CO₂/kWh

2. necessary for high power density and dynamic

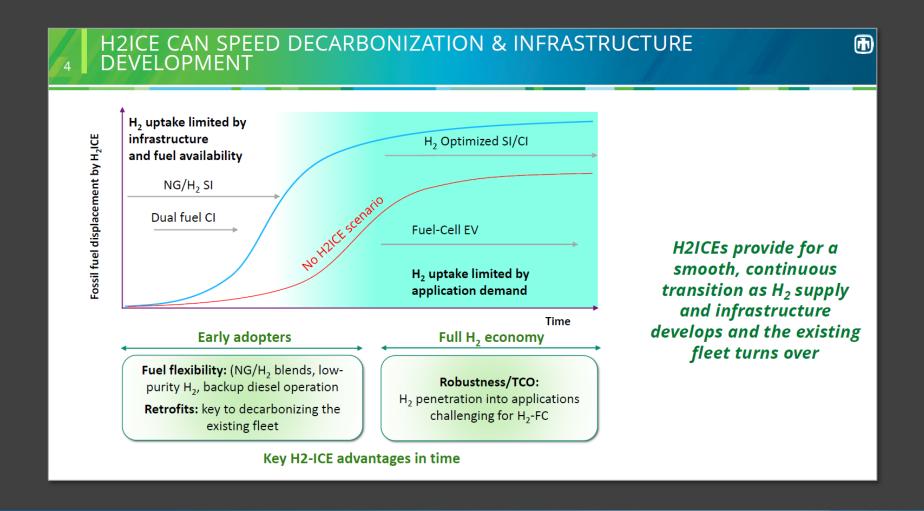


H₂ ICE: DEUTZ TCG 7.8 Hydrogen Engine – Transient Response

H2 characteristics in an ICE:

- Density (Energy to Volume) NA, WG or VTG
- Diffusivity
- Air/ Fuel Ratio
- Ignition Energy
- Auto Ignition Temp
- Flame Velocity

H₂ ICE: DEUTZ TCG 7.8 Hydrogen Engine – Some Characteristics in Comparison


RELATIVE STRENGTHS OF H2ICE AND H2FC - TODAY'S TECHNOLOGY **H2ICE** H2FC Characteristic Drive Efficiency Fuel Cell Excellent: low - mid load **Efficiency** Good: mid - high load H2ICE Gap, cross-over? Cooling needs **Intermediate** High, critical for stationary and slow-moving Net Power [%] 100 applications Pow **Emissions** NOx (and minor CO₂) None er 300 kW 300 kW flux Low with aftertreatment Net power Coolant rated **Durability** High Improving with new R&D Exhaust pow **Robustness** High Sensitive to vibration [kW] H₂ Engine Fuel Cell Powertrain Powertrain Noble metal Low - intermediate High (after-treatment) consumption High-load duty-cycles: High-purity H2 required **Fuel purity Tolerant to contaminants** US EPA cycle: excavator **Fuel flexibility** Diesel/NG backup Can be flexible, efficiency penalty **Upfront cost** Low High Cold start No issues Temperature conditioning Resale value Depending on infrastructure Unclear

Source: Aleš Srna, Energy & Homeland Security "Is there a place for H2 internal combustion engines?"

H₂ ICE: DEUTZ TCG 7.8 Hydrogen Engine – H2 ICE can help accelerate CO2 reduction

Source: Aleš Srna, Energy & Homeland Security "Is there a place for H2 internal combustion engines?"

H₂ ICE: DEUTZ TCG 7.8 Hydrogen Engine – Key Take Aways

CO2-FREE TECHNLOLOGY

Meets current emission limits for zero-emission heavy-duty vehicles (<1g CO₂/kWh)

ACCELERANT TECHNLOLOGY

Ideal Technology to accelerate supporting aspects around H2 usage (e.g. infrastructure) while Technologies further mature in Emission Reduction and Efficiency Increase

HIGH PERFORMANCE

Power density and efficiency comparable to diesel engine

HODEUTZ

HYDROGEN TECHNOLOGY

ECONOMICAL ALTERNATIVE

Attractive overall cost perspective

HIGH RELIABILITY

Based on well-known engine technology Quick Industrialization possible

towards a classification of Zero Emission and or Zero CO2 would help to promote this technology

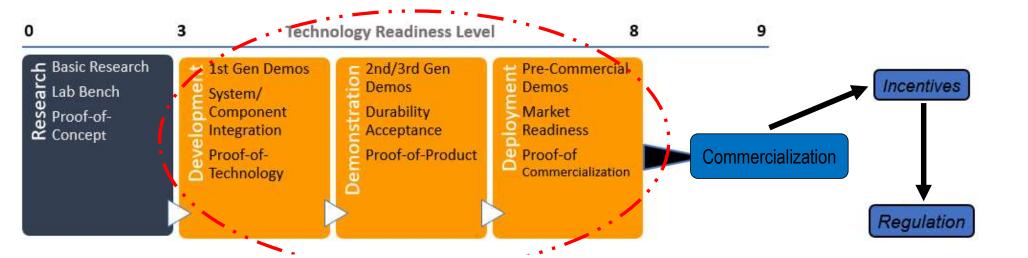
Performance and Emission improvements – Collaboration Opportunity for demo [Georgios Karavalakis, Ph.D.]

Thank you for your Time and Attention

CLEAN FUELS PROGRAM ADVISORY GROUP September 14th, 2023

Christoph Scholtes CTO | DEUTZ Americas

The 2024 Plan Update


Clean Fuels Program Advisory Group Meeting

September 14, 2023

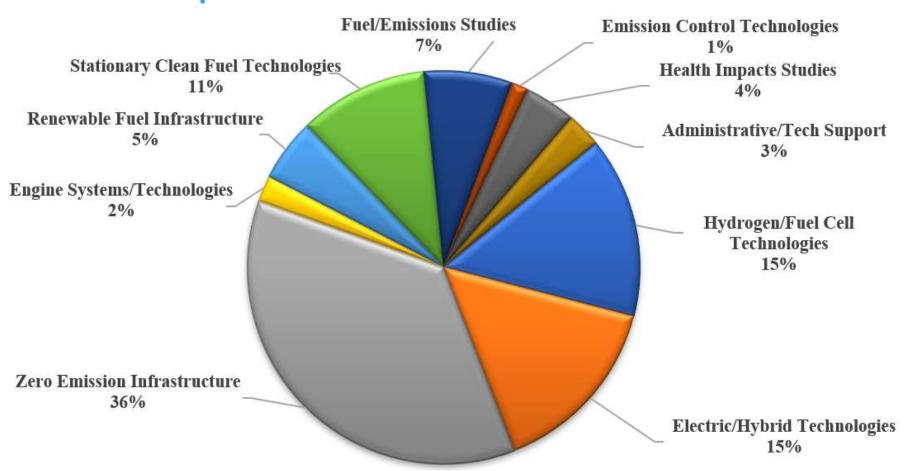
Vasileios Papapostolou Technology Demonstration Manager

Clean Fuels Fund Program

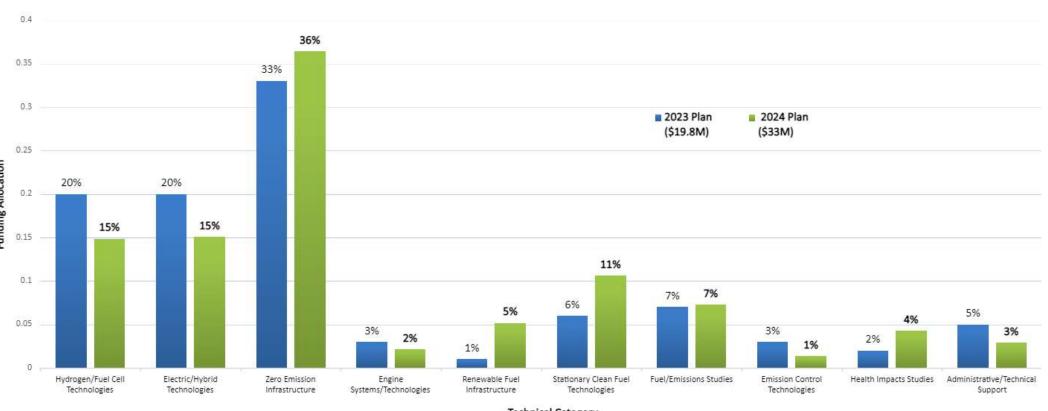
- Established in 1988
- \$1 fee on DMV registrations (\$~12M/yr)
- Stationary source fee (~\$400k/yr)
- Research, develop, demonstrate, and deploy clean technologies

Draft 2024 Plan Update (Key Technical Areas)

- Medium and heavy-duty zero emission trucks and equipment
- Alternative charging solutions to deploy zero emission infrastructure
- Zero emission microgrid technologies
- Ultra-low NOx and HD zero emission engine technologies
- Fuel and emission studies on NOx emissions from hydrogen fueled internal combustion engines and PM emissions from brake and tire wear
- Maintain other areas of emphasis



Draft 2024 Plan Update Proposed Projects


- Large deployments of medium and heavy zero emission trucks and infrastructure
- Innovative solutions to support HD truck charging and hydrogen fueling
- High-power charging including megawatt charging to increase battery electric truck range
- Develop and demonstrate long range Class 8 fuel cell electric trucks and equipment
- Develop and demonstrate green hydrogen production pathways

Proposed 2024 Plan Distribution

Plan Update Comparison

Proposed Distribution

	2023 Plan (\$19.8M)	Draft 2024 Plan (\$33M)
Hydrogen & Fuel Cell Technologies	20%	15%
Electric/Hybrid Technologies	20%	15%
Zero Emission Infrastructure	33%	36%
Engine Systems/Technologies	3%	2%
RNG Infrastructure	1%	5%
Stationary Technologies	6%	11%
Fuel/Emission Studies	7%	7%
Emission Control Technologies	3%	2%
Health Impacts Studies	2%	4%
Administrative/Technical Support	5%	3%
	100%	100%

Feedback

Email

Vasileios Papapostolou vpapapostolou@aqmd.gov

or

Aaron Katzenstein akatzenstein aqmd.gov