Zero Emission Transit Buses

Naveen Berry Clean Fuels Advisory Group September 1, 2016

Background

- California Air Resources Board has proposed a "Zero Emission Bus" (ZEB) rule
 - Applicable to all California Transit Agencies
 - All buses must be "zero emission" by 2040
 - Only electric & fuel cell buses qualify as ZEB
- Local Transit Agencies
 - Successfully transitioned to CNG buses
 - Larger transit agencies support near-zero engine technology combined with RNG
 - Continuing to assess ZEBs

Battery Electric Buses

Proterra

- 53-131 kWh battery Lithium Titanate
- 10 minute recharge
- Recently developed longer range bus
 - 129-321 kWh battery 1 hour charge time
 - Up to 180 miles

BYD

- 324 kWh battery LiFePO4 4 hour recharge
- 150+ miles

Battery Electric Buses Cont'd.

New Flyer

- 100–300 kWh Lithium Ion Fast Charging
- Up to 140 Mile

Complete Coach Works

- 242 kWh Lithium Ion 4-5 hours recharge
- Up to 115 miles

Alexander Double Decker

- 84 passenger similar to articulated buses
- BYD propulsion system

Fuel Cell Buses

New Flyer

- Ballard HD85 Module
- 80 kWh battery pack Li-FePo4
- 4 hydrogen tanks 350 Bar/38 kg
- Siemens ELFA Drive System
- 300 Mile Range/6 min fill time

El Dorado National

- Ballard/BAE
- 11 KWh battery pack Li Ion
- 8 hydrogen tanks 350 Bar/50 kg
- 300 Mile Range/6 min fill time

Analysis done by Ramboll/Environ for LACMTA - CARB currently evaluating

Cost Effectiveness 2015 – 2055 (\$/ton)

			LNOx + RNG	ELECTRIC BUS		FUEL CELL BUS	
				Depot Charge	Depot & In- route	SMR	ELECTR
Compared to Baseline	Cost Increase (NPV \$ million)		\$161.3	\$2,154.9	\$1,224.5	\$1,420.7	\$1,992.4
	GHG Reduction (million tons)		11.4	8.3	8.4	3.3	6.7
	In-basin NO _x Reduction (tons x 000)		2.7	2.9	2.9	0.1	2.5
Cost Effectiveness (\$/ton) ¹		GHG	\$14	\$259	\$146	\$432	\$296
		IB NO _x	\$59,000	\$755,000	\$427,000	\$20 mill	\$795,000

MJB & A

¹ Assumes that 100% of cost increase attributed to each pollutant

Summary

- In the short-term, continue to support larger scale deployment of near-zero emission engines with renewable fuels
- Continue to support development, demonstration and deployment of zero emission buses
- Continue to evaluate and support infrastructure (electric and hydrogen) for medium- and heavy-duty uses